Меню

Звезду номинальное линейное напряжение



В чем главные отличия линейного и фазного напряжения?

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Электрическое напряжение трехфазных сетей

  • Виды напряжения ↓
  • Отличия ↓
  • Соотношение ↓
  • Схема ↓
  • Расчет линейного и фазного напряжения ↓

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Линейное и фазное напряжение

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение

Соотношение между линейным и фазным напряжением

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Читайте также:  Тонна напряжения 9 букв

Схема

Схема соединения обмоток генератора

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

  • Uл=Uф∙√3, где:

Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

  • Q = Qа + Qb + Qс;

Идентичная структура формулы активной мощности:

  • P = Pа + Pb + Pс;

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

  • U1=U2=U3= √3 Uф=√3*220=380 В.

Источник

Соединение типа звезда и треугольник для электродвигателей

На сегодняшний день данная тема особо актуальна, и в интернете можно найти массу вопросов по ней. Ответов тоже много, но некоторые из них на гранью фантастики. Поэтому мы решили пошагово и точно рассказать о соединении обмоток электродвигателя так исходя из своей практики.

Для начала вкратце вспомним действие асинхронного электродвигателя. Подключают его сети с трехфазным переменным напряжением. В статоре есть 3 обмотки, сдвинутые по отношению друг к другу на 120 электроградуса. Все это необходимо для того. Чтобы возникло вращающееся магнитное поле.

Выводы обмоток статора обозначают так:

  • С1, С2, С3 – начала обмоток,
  • С4, С5, С6 – конец обмоток.

Указанное обозначение является стандартным, но сегодня появились новые маркировки выводов, которые соответствуют ГОСТу 26772-85:

  • U1, V1, W1 — начала обмоток,
  • U2, V2, W2 – конец обмоток.

Выводы фазных обмоток асинхронного двигателя выводят на клеммник или колодку и размещают так, чтобы при подключении использовать специальные перемычки и не перекрещивать провода.

Клеммник в основном стараются прикреплять сверху или, если не получается, сбоку. Иногда если тип клеммника позволяет его можно развернуть на 180°, чтобы осуществление подводки питающих кабелей было удобней.

На клеммник можно вывести 3 или 6 выводов фазных обмоток статора.

Читайте также:  Регулятор напряжения для renault megane 2

Рассмотрим каждую ситуацию отдельно.

Например: Если вывести в клеммник 6 выводов обмоток статора, то подключиться можно в сеть на два разноуровневых напряжения, которые могут отличаться величиной в 1,73 раза (√3). Если взять электродвигатель с напряжением 220/380 (В), а в сети уровень линейного напряжения будет составлять 380 (В), то статорные обмотки следует соединять по схеме звезда.

Концы трех обмоток соединяем в одной точке за счет специальной перемычки. На начальные концы обмоток подаем трехфазное сетевое напряжение. Напряжение фазной обмотки должно составить 220 (В), а линейное напряжение между двумя фазными обмотками — 380 (В).

Если сеть имеет линейное напряжение уровнем 220 (В), то обмотку статора нужно соединить по схеме треугольник. Пошаговое соединение по типу треугольник фазных обмоток:

  • конец обмотки фазы «А» C4 (U2) соединяем с началом обмотки фазы «В» С2 (V1)
  • конец обмотки фазы «В» С5 (V2) соединяем с началом обмотки фазы «С» С3 (W1)
  • конец обмотки фазы «С» С6 (W2) соединяем с началом обмотки фазы «А» С1 (U1)

Места, где произведено соединение, подключаются к соответствующим фазам питающего трехфазного напряжения.

Л инейное напряжение в данном случае должно составлять 220 (В), и на трехфазной обмотке также 220 (В).

На клеммнике при подключении по схеме треугольник обмоток статора асинхронного двигателя специальные перемычки следует установить так:

В представленных примерах при подключении, что по схеме звезда, что треугольник напряжение каждой фазы обмотки асинхронного двигателя составляет 220 (В).

Иногда так бывает, что на клеммник асинхронного двигателя выведено не 6, а 3 вывода. В такой ситуации соединение независимо от вида схемы будет выполняться внутри двигателя с торца. В данном случае подключение к сети можно будет провести только при одном напряжении, которое указано на таблице с технической информацией.

Если обмотки асинхронного двигателя соединены звездой, то запуск будет мягким, а работа плавной. При этом допускаются кратковременные перегрузки. При соединении треугольником обмоток асинхронного электродвигателя можно достичь его максимальной мощности. В период запуска токи будут иметь большое значение. Можно будет еще пронаблюдать, что двигатель, подключенный по данной схеме, будет сильнее нагреваться.

Исходя из полученных данных, мы должны понимать, что асинхронные двигатели средней мощности и выше следует запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника.

Также на основе собственного опыта рекомендуем для асинхронного электродвигателя использовать стеатитовые клеммные колодки, которые позволят надежно и безопасно провести подключение проводов к любой сети. Их можно использовать не только для электродвигателей, но и для оборудования и отдельных нагревательных элементов с повышенным уровнем температуры.

Клеммные колодки КМ имеют керамический корпус и расположенный внутри трубчатый латунный профиль. Наличие резьбовых отверстий позволяет устанавливать шпильки для колодки.

Выбирая клеммные колодки, в первую очередь обращайте внимание на предъявляемый уровень их сопротивления температурной нагрузке. Клеммники низкого качества приводят к плавлению изоляции, и провоцирую появление коротких замыканий в системе питания. Применение стеатитовых колодок позволяет исключить перечисленные риски, т. к. корпус из керамики выдерживает температуру вплоть до 1000 °С. А клеммные колодки керамические для для асинхронного электродвигателя работают при постоянной температурной нагрузке окружающей среды в 300°С.

Помимо стеатитовых клеммных колодок для электродвигателей «Элемаг» изготавливает еще несколько разных вариантов колодок обладающих высоким уровнем термостойкости. В разделе товаров на сайте вы можете рассмотреть:

  • Стеатитовые клеммники SL;
  • Керамические клеммники SD Ceramics;
  • Клеммные колодки стеатитовые KMK Ceramica;
  • Клеммные колодки фарфоровые Werit;
  • Клеммные блоки термостойкие Conta-Clip.

Термостойкие колодки от «Элемаг» широко используют для подключения электротехнического оборудования, т. к. им характерно безопасное использование и удобное проведение соединений. Мы изготавливаем клеммники для температурных нагрузок свыше 100°С. Мы используем для разных типов колодок стеатит, керамику и даже фарфор. Это отличные изоляторы способные выдерживать сверхвысокие температуры, обладают устойчивостью к пробоям тока, не поддаются плавке и горению. Для увеличения защиты мы можем покрывать колодки специальной керамической глазурью.

Корпуса у колодок могут быть закрытыми или открытыми. У первых контакты располагаются внутри корпуса, а у вторых контакты размещены вверху колодки. Для фиксации колодок в корпусе могут быть выполнены специальные отверстия.

У нас в ассортименте вы сможете подобрать и открытые и закрытые колодки на 2, 3, 4, 5 контактов.

Читайте также:  Регулятор напряжения 120 схема подключения

Мы советуем устанавливать лампы, чередуя в шахматном порядке. Эта схема поможет уменьшить количество необогреваемых точек.

Источник

Линейное и фазное напряжение — отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Линейное и фазное напряжение - отличие и соотношение

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Источник