Меню

Защита трансформаторы напряжения от феррорезонанс



Схемы защит трансформаторов напряжения от феррорезонанса

Как сделать заказ

Варианты схем, разработанных конструкторами ОАО «СЗТТ» для защиты трансформаторов напряжения от феррорезонанса.

Схема защиты от феррорезонанса

Краткое описание и преимущества применения

Антирезонансная трехфазная группа 3хЗНОЛ(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через высокоомные резисторы.

Антирезонансная трехфазная группа 3хЗНОЛ(П)

Антирезонансная трехфазная группа 3хЗНОЛ(П) с заземлением нейтрали через высокоомные резисторы — это самая распространенная схема защиты трансформаторов напряжения от феррорезонанса, которая применяется в сетях на класс напряжения (6-10) кВ.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополнительные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4 А.

Также трехфазные группы выпускаются со встроенным защитным предохранителем, что обеспечивает дополнительную защиту обмоток ВН от сверхтоков при феррорезонансе.

Применяется как стандартное решение для защиты трансформаторов напряжения от феррорезонанса в сети.

Антирезонансная трехфазная группа 3хЗНОЛ(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через высокоомные резисторы и устройством СЗТн.

Антирезонансная трехфазная группа 3хЗНОЛ.04(П)

Антирезонансная трехфазная группа 3хЗНОЛ(П) с заземлением нейтрали через высокоомные резисторы и устройством СЗТн практически не имеет отличий от предыдущего варианта. Отличие лишь в том, что в дополнительные обмотки соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, включаются устройство СЗТн . Устройство можно применять одновременно с защитным реле и сопротивлением 25 Ом. Параллельное подключение не влияет на защитные функции СЗТн.

Применение устройства СЗТн значительно повышает антирезонансные свойства трехфазной группы.

Применяется как стандартное решение для защиты трансформаторов напряжения от феррорезонанса в сети.

Антирезонансная трехфазная группа 3хЗНОЛ.04(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через дополнительный трансформатор напряжения нулевой последовательности.

Антирезонансная трехфазная группа 3хЗНОЛ.04(П)-01

Антирезонансная трехфазная группа 3хЗНОЛ.04(П) с заземлением нейтрали через реактор состоит из трех однофазных заземляемых трансформаторов напряжения, соединенных в звезду с выведенной нейтралью, и дополнительного трансформатора напряжения нулевой последовательности (ТНП), который включается между нейтралью звезды и землей. Вывод «Х» ТН, входящих в звезду, рассчитан на полную изоляцию, что позволяет испытывать внутреннюю изоляцию ТН полным уровнем приложенного напряжения промышленной частоты.

ТНП позволяет измерять напряжение нулевой последовательности , а его большое реактивное сопротивление эффективно предотвращает возникновение устойчивого феррорезонанса.

Данная схема для защиты от феррорезонанса является наиболее эффективной, универсальной и может применяться в широком диапазоне ëмкостных параметров сетей, класса напряжения (6-35) кВ.

Антирезонансная трехфазная группа 3хНОЛ(П) на базе однофазных незаземляемых трансформаторов напряжения.

Антирезонансная трехфазная группа 3хНОЛ(П)

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью разработана трехфазная группа 3хНОЛ-6(10), состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ-6(10) – отсутствие заземляемого вывода с ослабленной изоляцией. Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Внутреннюю

изоляцию трансформаторов можно испытывать приложенным одноминутным напряжением промышленной частоты.

Возможно изготовление трансформаторов с основной и дополнительной вторичной обмоткой. Дополнительная обмотка предназначена для питания цепей собственных нужд и не является измерительной.

Читайте также:  Определить вертикальные напряжения от действия сосредоточенной силы

Антирезонансная схема с R/C –гасителями.

Антирезонансная схема с R/C-гасителями

Антирезонансная схема с R/C – гасителями. В схеме могут быть использованы заземляемые или незаземляемые трансформаторы напряжения. В случае использования заземляемых трансформаторов напряжения, R/C – гасители и трансформаторы напряжения включаются параллельно в сеть, по схеме звезда / звезда. В случае с использованием незаземляемых трансформаторов, R/C – гасители включаются по схеме звезда, трансформаторы напряжения по схеме открытого или полного треугольника.

Схемы с R/C – гасителями применяются, как правило, для защиты трансформаторов напряжения от воздействия перенапряжений, низкого качества электрической энергии и других негативных факторов влияющих на надежность трансформаторов напряжения.

Схема 5 разработана совместно с партнером — ООО «Экспертный центр технологических решений» г. Екатеринбург. Подробная информация по ссылке.

Источник

Резонанс в электросети: причины, борьба с резонансом, природа возникновения

Содержание

Главными факторами, вызывающими феррорезонансные явления в электросетях, являются ёмкостные и индуктивные элементы, способные образовывать колебательные контуры в моменты переключений. Особенно заметно данный эффект проявляется в силовых трансформаторах, линейных вольтодобавочных трансформаторах, трансформаторах напряжения, шунтирующих контурах и в подобном оборудовании, оснащённом массивной обмоткой.

Виды и возникновение резонанса

Всего выделяют два различных типа таких явлений: резонанс напряжений и токов.

Первые обычно проявляются в контурах, использующих последовательное соединение реактивных элементов. Резонанс токов, в свою очередь, характерен для систем с параллельным соединением ёмкостного и индуктивного элемента. Подобных цепей (LC-контуров) в каждой электрической сети огромное множество, поэтому и переходные процессы для каждой отдельной сети при аварийных и плановых отключениях носят индивидуальный и весьма сложный смешанный характер.

Феррорезонанс возникает при наличии в сети индуктивности, характеризующуюся нелинейной вольт-амперной характеристикой.

Данной особенностью обладают катушки индуктивности, сердечник которых выполнен из ферромагнитного материала. В частности, это относится к широко распространённым сейчас трансформаторам напряжения серии НКФ. Такой негативный эффект обусловлен малой величиной индуктивного и омического сопротивления относительно реакторов и силовых трансформаторов.

Причины возникновения резонансных явлений

При подключении трансформаторов напряжения, в сети образуются последовательно соединённые LC-цепочки, представляющие собой резонансный контур. В таком сочетании, когда индуктивный элемент с нелинейной вольт-амперной характеристикой подключается последовательно к ёмкостному элементу, напряжение на данном участке цепи можно охарактеризовать как активно-индуктивное.

Такое положение дел обусловлено тем, что в индуктивных компонентах амплитуда напряжения опережает амплитуду тока на угол в 90 градусов, в то время как в ёмкостных компонентах, напротив, отстаёт на 90 градусов от тока.

По истечении некоторого промежутка времени напряжение на индуктивном компоненте достигает пикового значения, магнитопровод насыщается, в то же время на ёмкостном компоненте напряжение продолжает возрастать. Резонанс напряжений наступает в тот момент, когда напряжение на индуктивности равно таковому на ёмкостном компоненте.

Дальнейшее увеличение приложенного к контуру напряжения приводит к изменению его характера на активно-ёмкостной.

Явление быстрого перехода активно-индуктивного типа приложенного напряжения в активно-ёмкостной получило название «опрокидывание фазы». Данный эффект положен в основу работы ряда специальных электронных приборов, но в то же время незапланированное возникновение подобных процессов в сетях таит в себе опасность для электрического оборудования.

Резонанс токов может вызывать те же последствия, что и резонанс напряжений, только он возникает в цепях, в которых LC-цепочки соединены параллельно.

Интересное видео о феррорезонансе в электросетях:

Читайте также:  Светодиодный прожектор его рабочее напряжение

Последствия и борьба с резонансными явлениями

На силовых трансформаторах с рабочим напряжением 220 кВ в результате резонанса напряжение может скачкообразно увеличиться до 300 кВ, а ток мгновенно поднимается до такой силы, при которой обмотки разрушаются в результате теплового воздействия (электродинамический удар).

Чтобы подобных явлений не возникало, в программах переключений обычно планируют специальные операции, исключающие протекание процессов резонанса, а в систему шин нередко специально устанавливают элементы, сопротивление которых призвано бороться с явлением резонанса.

Источник

Защита от повреждений трансформаторов напряжения 6-35 кВ при феррорезонансных процессах

Ежегодно в сетях напряжением 6-35 кВ повреждаются примерно 6-8% трансформаторов напряжения (ТН). Причиной повреждения является длительное протекание по первичной обмотке ТН токов, величина которых значительно превышает максимально допустимую по условию тепловой устойчивости изоляции обмотки. Эти токи возникают при феррорезонансных процессах (ФРП) в контуре, образующемся при определённых режимах сети, когда после угасания дуги через индуктивность обмоток ТН «стекает» ёмкостный заряд.

Насыщение магнитопровода может возникнуть, если энергия, запасённая в емкостях сети, к моменту угасания дуги окажется больше порогового значения электромагнитной энергии, запасённой в индуктивностях ТН.

В [Л1] приведены три причины возникновения ФРП:

1. Величина ёмкости сети Сэкв должна находиться в интервале, определённом пределами изменения индуктивности ТН, т.е.

Величина ёмкости сети Сэкв

  • Lхх и Lн — индуктивности холостого хода и насыщения, соответственно;
  • w — угловая частота напряжения сети.

Приведенные в [Л2] расчёты показали, что для ТН типа ЗНОМ-35 при емкостном токе сети равном 4 А и более на один ТН феррорезонанс не возникает. Однако, в сетях с воздушными линиями, особенно на напряжении 6-10 кВ, емкостный ток может быть меньше.

2. Феррорезонанс возникнет в контуре с резонансными параметрами после скачкообразного понижения напряжения от Uл до Uф при отключении однофазного замыкания (ОЗЗ) на землю. Феррорезонанс в сети с ТН не возникает при номинальной индукции, равной 0,9 Тл. В настоящее время величина индукции выпускаемых ТН составляет 1,5 Тл.

3. Величина энергии, поступающей в феррорезонансный контур при каждом изменении индуктивности ТН, должна быть больше величины потерь в нём. Данный показатель позволяет оценить эффективность включения резистора сопротивлением rвт=25 Ом в схему разомкнутого треугольника ТН, как указано в ПУЭ. Величина сопротивления резистора определена длительно допустимой мощностью ТН, равной 400 ВА при напряжении 100 В.

В соответствии с [Л2] эквивалентная ёмкость сети определяется из выражения:

эквивалентная ёмкость сети

где: R1 — сопротивление rвт, приведенное к первичной стороне и определяемое из выражения:

сопротивление rвт

коэффициент трансформации ТН— коэффициент трансформации ТН.

В соответствии с ПУЭ rвт= 25 (Ом).

Ёмкости Сэкв соответствует емкостный ток сети, определяемый из выражения:

емкостный ток сети

Для сети напряжением 35 кВ Ic= 0,013 А, что значительно меньше фактических значений Ic. Для сети напряжением 10 кВ Ic= 0,044 А, что также значительно меньше фактических значений Ic.

Читайте также:  Зарядное устройство с поддержкой напряжения

Таким образом, включение резистора сопротивлением 25 Ом в схему разомкнутого треугольника ТН не имеет практического эффекта, а уменьшение его сопротивления приведёт к недопустимому для ТН увеличению мощности.

Из практики известно, что наступление феррорезонанса происходит, когда емкостной ток на ТН находится в интервале 0,3-4 А, что характерно для воздушных линий напряжением 6 -35 кВ. Поэтому целесообразно включение между фазным проводником и землёй конденсаторной установки необходимой мощности.

Для исключения феррорезонанса в сети 35 кВ необходимо в нейтраль силового трансформатора включить высоковольтный резистор.

В сети 6 — 10 кВ необходимо в обмотку разомкнутого треугольника трансформатора заземления нейтрали включить низковольтный резистор.

Подобное резистивное заземление нейтрали ограничивает также напряжение смещения нейтрали в компенсированных сетях.

В [Л1] доказана эквивалентность схем подключения высоковольтного и низковольтного резистора с точки зрения уровня перенапряжений при ОЗЗ. Результаты моделирования дугового ОЗЗ полностью совпали. Кратность уровня напряжения в обеих схемах не превышала 2-2,5 величины фазного напряжения.

Кроме подавления феррорезонансных процессов, резистор разряжает сеть в случае, когда дуга замыкается один раз за период и, фактически, является выпрямителем, приводящим к перевозбуждению индуктивности сети постоянным током.

Сопротивление резистора выбирается по условию ограничения напряжения при ОЗЗ и обеспечения чувствительности защиты от ОЗЗ.

На распределительных устройствах, подключаемых к питающей подстанции, необходимо применение ТН без заземления нейтрали.

Одной из причин высокой повреждаемости ТН является полное отсутствие их защиты. Применение предохранителей ПКН001 и ПКТ неоправданно, так как их токи срабатывания значительно превышают предельно допустимые токи первичных обмоток ТН, составляющие для ТН 6 кВ — 0,115 А, для ТН 10 кВ — 0,109 А и для ТН 35 кВ — 0,049 А.

При феррорезонансе токи достигают нескольких десятков ампер. Поэтому по рекомендации завода-изготовителя необходимо применение ТН со встроенным предохранительным устройством с током срабатывания не более 0,7 А за время срабатывания не более 20-30 с, например, антирезонансных ТН типа ЗхЗНОЛП напряжением 6 -10 кВ.

1. Для исключения перенапряжений необходимо предусмотреть:

  • в сетях 35 кВ — подключение к нейтрали 35 кВ силового трансформатора высоковольтного резистора;
  • в сетях 10 кВ — подключение в разомкнутый треугольник трансформаторов заземления нейтрали низковольтного резистора.

2. Для исключения феррорезонанса целесообразно между фазным проводником и землёй подключить конденсаторную установку необходимой мощности на ток не менее 4 А.

3. Для защиты от повреждений необходимо применение антирезонансных ТН со встроенными в ТН предохранительными устройствами, например, типа ЗхЗНОЛП напряжением 6-10 (кВ).

4. На распределительных устройствах, где не требуется контроль изоляции, целесообразно применение ТН без заземления нейтрали.

  1. Сивокобыленко В. Ф., Лебедев В. К., Сердюков Р. П. Переходные процессы в электрических сетях с резистивным заземлением нейтрали. Тезисы. Технические науки — Электротехника. – Донецкий национальный технический университет.
  2. Халимов Ф. X., Евдокунин Г. А., Таджибаев А. Н. Защита сетей 6 — 10 кВ от перенапряжения. — Санкт-Петербург, 2001

Источник

Adblock
detector