Меню

Защита трансформатора напряжения нтми



Защита трансформатора напряжения нтми

Защита трансформаторов напряжения в сетях 3-35 кВ. Необходимо изменить режим заземления нейтрали

В электрических сетях 3-35 кВ с изолированной нейтралью или нейтралью, заземленной через дугогасящий реактор, постоянно происходят процессы, которые отрицательно отражаются на работе заземляемых электромагнитных трансформаторов напряжения (ТН) вне зависимости от вида их изоляции.
По этой причине по данным [1] средний срок службы ТН типов НТМИ-6, НТМИ-10, ЗНОМ-20, ЗНОМ-35 часто не превышает 3-5 лет. Не лучше обстоят дела и с ТН с литой изоляцией. Особенно высокая повреждаемость ТН фиксируется в сетях 35 кВ [2].
К процессам, отрицательно влияющим на работу электрооборудования, относятся:

  • феррорезонансные перенапряжения;
  • коммутационные перенапряжения;
  • переходные процессы;
  • смещения нейтрали;
  • наличие постоянной составляющей магнитного потока в ТН при автоколебательных процессах в сети.

Причинами, вызывающими эти процессы, являются:

  • неблагоприятное сочетание ёмкости электрической сети по отношению к земле и нелинейной индуктивности ТН;
  • короткие замыкания;
  • дуговые замыкания на землю;
  • неполнофазная коммутация;
  • коммутация ненагруженных трансформаторов;
  • обрывы проводов.

Два примера повреждения ТН
Останавливаться на физической сущности перечисленных выше процессов не следует, поскольку они подробно описаны во многих публикациях. Целесообразно привести два наиболее характерных примера повреждения ТН с литой изоляцией производства ОАО «Свердловский завод трансформаторов тока» (ОАО «СЗТТ»).
1984 год. Завод промышленных тракторов, г. Чебоксары. На предприятии две подстанции 10 кВ, питающие литейное производство. На обеих подстанциях применены заземляемые ТН производства ОАО «СЗТТ». На одной подстанции применена электромашинная компенсация реактивной мощности, а на другой – ёмкостная. На первой подстанции трансформаторы напряжения эксплуатировались благополучно в течение длительного периода, на второй – вышли из строя при пуске подстанции в эксплуатацию. В порядке эксперимента службой главного энергетика завода с первой подстанции были сняты ТН и установлены на второй вместо поврежденных. Сразу после включения они стали перегреваться. Этот пример свидетельствует о необходимости применения специальных мер по рассогласованию параметров сети и ТН при емкостной компенсации реактивной мощности.
Другой пример. 2001 год. ОАО «Уралмашзавод», г. Екатеринбург, Свердловская ТЭЦ, подстанция «Литейная» – ЗРУ-35 кВ и литейный цех – РУ-35 кВ. Зафиксированы массовые выходы из строя заземляемых электромагнитных ТН 35 кВ практически сразу после первых включений ненагруженного силового трансформатора ЭТЦН-32000/35 вакуумными выключателями.
Однолинейная принципиальная электрическая схема питания трансформатора ЭТЦН-32000/35 приведена на рис. 1. На рис. 2 приведена принципиальная электрическая схема RC-цепочки, примененной в схеме для защиты силового трансформатора ЭТЦН-32000/35, питающего литейную установку «печь-ковш». Проведенное сравнение параметров сети и заземляемых ТН ЗНОЛЭ-35 и ЗНОЛ-35, оценка режимов работы сети, после которых ТН выходили из строя, свидетельствуют о наличии значительных перенапряжений, поскольку:

  • индуктивное сопротивление насыщения ТН и емкостное сопротивление сети относительно земли одного порядка – ХLms 13000 Ом; Xс 9000 Ом (при расчетах не учитывались параметры остального электрооборудования), что является предпосылкой феррорезонансных перенапряжений;
  • включение и отключение трансформатора ЭТЦН-32000/35 производилось на холостом ходу вакуумными выключателями, что вызывает значительные коммутационные перенапряжения [3, 4].

Рис. 1

Принципиальная схема и характеристики элементов схемы электроснабжения установки «печь-ковш»

Принципиальная электрическая схема RC-цепочки трансформатора ЭТцН-32000/35

Бороться необходимо с причиной
Существуют различные схемные решения по подавлению отрицательных процессов в электрических сетях 3-35 кВ. Например:

  • заземление нейтрали обмоток высокого напряжения ТН через резисторы различных значений сопротивлений – от низкоомных до высокоомных;
  • включение резисторов в разомкнутый треугольник обмоток ТН, предназначенных для контроля изоляции сети;
  • включение высокоомных резисторов между питающей сетью и обмотками высокого напряжения ТН;
  • применение антирезонансных ТН типа НАМИ;
  • другие технические решения, например, замена в НАМИ заземляемой электромагнитной фазы емкостным делителем;
  • применение электромагнитных ТН с ненасыщаемой магнитной системой;
  • заземление нейтрали заземляемых ТН через первичную обмотку незаземляемого ТН;
  • заземление нейтрали ТН через первичную обмотку трансформаторов тока (ТТ) с подключенным ко вторичной обмотке ТТ низкоомным резистором.

Специалистами также предлагается отказ от применения электромагнитных ТН и использование других принципов контроля несимметрии сети [5]. Нетрадиционный принцип контроля несимметрии приведен в [1], но с применением электромагнитных ТН без обмоток контроля несимметрии. При этом контроль осуществляется с помощью трехфазного резисторного делителя напряжения, подключенного к выводам первичных обмоток ТН. Однако перечисленные выше меры не дают должного эффекта, поскольку являются борьбой со следствием, а не с причиной. При применении этих решений, как правило, ухудшаются метрологические характеристики ТН. Согласно [6] применение ТН типа НАМИ полностью не решает проблему, поскольку:

  • переходные процессы в сети с изолированной нейтралью, содержащей трансформаторы НАМИ-10, могут приводить к глубокому насыщению сердечника фазного ТН;
  • наиболее тяжелым режимом для НАМИ при дуговых замыканиях является режим однополярной дуги, когда зажигание дуги происходит один раз в период промышленной частоты;
  • причинами повреждения трансформаторов НАМИ-10 при длительных дуговых замыканиях в сети с изолированной нейтралью из-за нагрева первичной обмотки фазного трансформатора могут быть:
    • разные напряжения зажигания дуги в положительную и отрицательную полуволну приложенного напряжения,
    • возникновение режима горения дуги с гашением ее на втором периоде вынужденной составляющей тока замыкания на землю в сети с токами замыкания 5 А и более.

Метрология и ТН
Наиболее характерным примером ухудшения метрологических характеристик ТН является включение высокоомных резисторов между питающей сетью и первичными обмотками ТН. При ознакомлении с информацией, касающейся феррорезонансных перенапряжений, на сайте «Конкурса русских инноваций» была обнаружена схема защиты заземляемых ТН на 35 кВ от феррорезонансных перенапряжений, применяемая в сетях 35 кВ СЭС АО «Колэнерго». В этой схеме для подавления феррорезонанса применяются высокоомные резисторы (15-45 кОм), включаемые между фазой сети и высоковольтным выводом ТН. Такие схемы по полученной информации на подстанциях АО «Колэнерго» применяются с мая 1996 г.
Предлагаемая схема приемлема с точки зрения защиты ТН от феррорезонанса, но совершенно неприемлема с точки зрения обеспечения требуемых от ТН метрологических характеристик для целей измерения и учета. Погрешности трансформаторов напряжения при такой схеме резко возрастают и трансформатор из класса точности 0,5 при номинальной мощности, соответствующей этому классу точности, переходит в класс точности 1 при сопротивлении резистора 15 кОм и в класс точности 3 при сопротивлении резистора 45 кОм, что недопустимо. Это подтверждено экспериментальными исследованиями, проведенными в ОАО «СЗТТ» и ХК «Московский электрозавод».
При указанной схеме включения ТН и резисторов погрешности ТН становятся более отрицательными, что приводит к значительному (до 1,5%) искажению показаний измерительных приборов, в т.ч. к недоучету электрической энергии. Каков недоучет электрической энергии в АО «Кол-энерго» за период с мая 1996 года по настоящее время, можно только предполагать. На рис. 3 приведена схема защиты ТН 35 кВ, применяемая в АО «Колэнерго», а в таблице 1 – результаты исследований ТН 35 кВ, включенных по такой схеме.Приведенные результаты свидетельствуют о недопустимости с точки зрения метрологии такой защиты ТН.

Читайте также:  Светодиод как ограничитель напряжения

Рис. 3

Схема защиты ТН 35 кВ от феррорезонансных перенапряжений, применяемая в АО «Колэнерго»

НЕ ВСЕ ПРЕДОХРАНИТЕЛИ МОГУТ ЗАЩИТИТЬ ТН
Поскольку заземляемые электромагнитные ТН обладают достаточно высокой нелинейной индуктивностью (от нескольких единиц генри для ТН 6 и 10 кВ до нескольких десятков генри для ТН 35 кВ) [7], негативные процессы в электрических сетях в первую очередь отражаются на работе этих ТН. Одной из основных причин высокой повреждаемости ТН, если не самой главной причиной, является полное отсутствие защиты ТН на выводах первичных обмоток. Применяемые для целей защиты ТН предохранители типов ПКН 001 и ПКТ непригодны, поскольку токи срабатывания этих предохранителей значительно превышают предельно-допустимые длительные токи первичных обмоток ТН. Предохранители сгорают только после повреждения ТН [2], поскольку предельно-допустимые длительные токи ТН составляют десятки миллиампер, в то время как сверхтоки, протекающие по первичной обмотке ТН при перенапряжениях, создают плотности тока недопустимых значений – до нескольких десятков ампер на квадратный миллиметр. В таблице 2 приведены предельно-допустимые длительные токи в первичных обмотках ТН на 3-35 кВ. На рисунках 4 и 5 приведены для примера ампер-секундные характеристики предохранителей ПКН 001 на 10 и 35 кВ. Эти характеристики подтверждают недопустимость применения таких предохранителей для защиты ТН. Что же необходимо сделать для снижения до минимума повреждаемости ТН?

Таблица 1. Результаты метрологических исследований ТН 35 кВ с высокоомными резисторами, включенными между сетью и первичными обмотками ТН

Погрешность Значение сопротивления резистора, включенного на высоковольтный вывод заземляемого ТН, кОм Норма по ГОСТ 1983-2001
15 45
напряжения, % -0,283 -0,802 -1,78 ± 0,5
угловая +9,2′ +22′ +48′ ± 20′

Таблица 2. Предельно-допустимые длительные токи ТН 3-35 кВ

Класс напряжения, кВ Предельно-допустимый длительный ток в первичных обмотках ТН, А
3 0,144
6 0,115
10 0,109
35 0,049

Прежде всего создать высоковольтную защиту ТН с токами срабатывания не более 0,5-0,7 А и временем срабатывания не более 20-30 с. В ОАО «СЗТТ» освоено промышленное производство заземляемых электромагнитных ТН на 6 и 10 кВ (ЗНОЛП-6 и ЗНОЛП-10) со встроенным защитным предохранительным устройством.На рисунке 6 приведена ампер-секундная характеристика такого устройства. По существу, это устройство является высоковольтным минивыключателем.После срабатывания устройства требуется только его перезарядка с заменой плавкой вставки. Проведение других операций (чистка полости патрона и т.п.) не требуется.
В настоящее время в ОАО «СЗТТ» проводятся квалификационные испытания незаземляемых ТН на 6 и 10 кВ (НОЛП-6 и НОЛП-10) со встроенными защитными предохранительными устройствами.
Но эти защитные устройства предназначены для ТН внутренней установки. С созданием аналогичных устройств для наружной установки возможны затруднения, поскольку необходимо будет решать проблему исключения влияния увлажнения на работу этих устройств.

Рис. 4

Ампер-секундная характеристика предохранителя типа ПКН 001 на 10 кВ

Ампер-секундная характеристика предохранителя типа ПКН 001 на 35 кВ

Ампер-секундная характеристика встроенного защитного предохранительного устройства трансформаторов ЗНОЛП-6 и ЗНОЛП-10

Требуется резистивное заземление нейтрали!
Для исключения в электрических сетях 3-35 кВ негативных процессов должен быть пересмотрен подход к нейтрали этих сетей в части её заземления. В мировой практике широко применяется резистивное заземление нейтрали в сетях среднего напряжения, что повышает надежность работы электрических сетей, в том числе и заземляемых трансформаторов напряжения. Российские и украинские специалисты также приходят к выводу о необходимости резистивного заземления нейтрали [8], [9], [10] и [11]. Необходимо осуществить переход на резистивное заземление в сетях 3-35 кВ на практике, что позволит до минимума сократить повреждаемость ТН. Конечно, это потребует определенных материальных затрат, но, считаю, они окупятся за довольно небольшой срок.

Читайте также:  Защита от повышения напряжения сети 220в

Выводы
1. Электромагнитные ТН – наиболее высокоиндуктивные элементы в электрических сетях.
2. Негативные процессы, происходящие в электрических сетях, отрицательно отражаются на работе электромагнитных ТН в связи с их высокой индуктивностью.
3. Назначение ТН – метрологическое обеспечение электрических сетей, а не подавление негативных процессов в них.
4. Защита ТН в электрических сетях отсутствует. Предохранители типов ПКН 001 и ПКТ для защиты ТН непригодны.
5. Необходимо разработать и освоить производство высоковольтных защитных устройств для ТН с токами срабатывания не более 0,5-0,7 А и временем срабатывания не более 20-30 с.
6. С 1 января 2003 года введены в действие ПУЭ 7-го изд. [12], п.1.2.16 которых разрешает применение резистивного заземления нейтрали в электрических сетях 3-35 кВ. Необходимо осуществить резистивное заземление нейтрали в этих сетях на практике.

Список литературы
1. Нагорный П.Д., Назаров В.В. Измерительные трансформаторы напряжения и контроль изоляции в сетях 6-35 кВ // Промышленная энергетика. – 2002, № 3. – С. 22-23.
2. Шаргородский В.Л. Автоколебательный процесс – причина повреждения трансформаторов напряжения // Электрические станции. – 1963, № 5. – С. 59-64.
3. Александров Г.Н. Теория применения ОПН для ограничения перенапряжений // Новости электротехники. – 2001, № 6. – С. 14-15.
4. Абрамович Б., Кабанов С., Сергеев А., Полищук В. Перенапряжения и электромагнитная совместимость оборудования электрических сетей 6-35 кВ // Новости электротехники. – 2002, № 5. – С. 22-24.
5. Лисицын Н.В. Аварийные режимы в сетях с изолированной нейтралью и способ контроля изоляции // Электрические станции. – 1996, № 1. – С. 42-48.
6. Богдан А.В., Калмыков В.В., Сафарбаков А.А. Переходные процессы в электрической сети 10 кВ с трансформаторами НАМИ-10 // Электрические станции. – 1993, № 10. – С. 46-49.
7. Виштибеев А.В., Кадомская К.П., Хныков В.А. Повышение надежности электрических сетей установкой трансформаторов напряжения типа НАМИ. // Электрические станции. – 2002, № 3. – С. 47-51.
8. Назаров В.В. О режимах нейтрали в сетях 6-35 кВ // Промышленная энергетика. – 1993, № 6. – С. 33-36.
9. Евдокунин Г.А., Гудилин С.В., Корепанов А.А. Выбор способа заземления нейтрали в сетях 6-10 кВ // Электричество. – 1998, № 12. – С. 8-22.
10. Шабад М.А. Обзор режимов заземления нейтрали и защиты от замыканий на землю в сетях 6-35 кВ России // Энергетик. – 1999, № 3.
11. Стогний Б.С., Масляник В.В., Назаров В.В., Нагорный П.Д., Демченко Н.А., Жереб А.А. О необходимости изменений режимов нейтрали в сетях 3-35 кВ // Энергетика и электрификация. – 2001, № 4. – С. 27-29.
12. Правила устройства электроустановок. 7-е изд.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Источник

Описание и технические характеристики трансформатора напряжения НТМИ

Трансформатор типа НТМИ – оборудование, способное в больших масштабах преобразовывать, измерять электрический ток переменного типа для работы защиты, сигнализации и прочего подобного оборудования. Агрегат позволяет контролировать состояние изоляционных слоев в сети. Чтобы правильно выбрать измерительные трансформаторы, необходимо рассмотреть технические характеристики, особенности ввода в эксплуатацию.

трансформатор нтми

  • 1 Устройство
  • 2 Сборка и введение в эксплуатацию
  • 3 Обозначение
  • 4 Особенности эксплуатации

Устройство

Трансформатор типа НТМИ 6 (10) кВ применимо для изменения показателей напряжения, учета электроэнергии в сети. Применяются в системах с нейтралью изолированного класса. Пользователи спрашивают при покупке, обязательно ли заземление для представленных конструкций. Паспорт прибора дает четкий ответ. В автоматических сетях обязательна нейтраль и заземление. Схема подключения трансформатора, обслуживание агрегата представлены производителем в инструкции.

Чертеж трансформатора НТМИ-6

Емкость трансформатора является металлической конструкцией. На крышке предусмотрены крюки, позволяющие транспортировать и устанавливать прибор на выделенной территории. Внизу конструкция имеет пробку для масла. Здесь установлен болт заземления. Сверху агрегата находятся выходы ВН, НН. Отверстие для доливки масляного охладителя находится здесь же, закрывается пробкой.

Трансформатор категории НТМИ 10 (6) кВ наделен стальным сердечником. Контур катушек медный.

Сборка и введение в эксплуатацию

Трансформатор напряжения группы НТМИ 10 (6) кВ имеет различные габариты и массу (в соответствии с мощностью). Стоимость также отличается в соответствии с указанными характеристиками. Сборка производится согласно инструкции производителя. Обмотки необходимо зафиксировать на стержнях магнитопривода, монтируется ярмо. Электрическая коммутация производится в соответствии с существующими стандартами. Выполняется процедура сушки.

Размеры НТМИ

Активную часть устанавливают в бак. Контролируется качество соединения обмоток пока агрегат не под напряжением. Оценивается коэффициент трансформации, погрешность при угловом сдвиге векторов фазы. Трансформатор напряжения категории НТМИ 6 (10) кВ нужно тщательно просушить. Проверяются соединения. Крышка ставится на предусмотренное место, заливается масло в бак.

Характеристики трансформатора НТМИ

Уровень охладительной жидкости контролируется. Качество масла соответствует требованиям стандартов. Монтируются дополнительные аксессуары.

Обозначение

Агрегаты представленного типа обозначаются по установленной системе. Маркировка позволяет определить особенности аппаратуры. Обслуживающий персонал должен видеть табличку с информацией о виде аппаратуры. Расшифровка данных следующая: НТМИ-6(10) – УЗ (ТЗ).

  • Н — трансформатор напряжения.
  • Т — трехфазный.
  • М – охладитель системы масляного типа, циркуляция естественная.
  • И – измерительный, предусмотрена дополнительная обмотка типа КИЗ.
  • 6(10) – параметры обмотки выводов ВН, кВ.
  • УЗ (ТЗ) – разновидность климатического размещения.
Читайте также:  Реле напряжения блокировка стартера

Информация наносится на специальную табличку, которая крепится винтами к корпусу трансформатора. Маркировку необходимо разместить в доступном для обозрения месте.

Бирка

Особенности эксплуатации

Установки представленной категории эксплуатируются строго в соответствии с общепризнанными стандартами. Ввод в эксплуатацию, контроль состояния оборудования производится обученными, опытными сотрудниками.

трансформатор напряжения нами-10

Представленная аппаратура устанавливается в районах с умеренным и холодным типом климата. Рядом запрещается хранить пожароопасные, взрывчатые, химические вещества, газы, жидкости.

трансформатор нтми-10 технические характеристики

Установка агрегата производится на высоте не более 1 км над уровнем моря. Конструкция не рассчитана на работу в условиях вибрации, механических ударов или тряски. Рабочий цикл достаточно длительный. Отключение аппаратуры производится для проведения планового ремонта, обслуживания. При появлении признаков неисправности, в аварийной ситуации, питание немедленно отключается.

Трансформатор НТМИ-10-66

Температура окружающей среды может достигать от +40 до -45ºС для категории У1. Климатическое исполнение ХЛ1 разрешает эксплуатацию в диапазоне от +40 до -60ºС. Относительная влажность составляет 80%. Перечисленные условия способствуют длительной, эффективной работе оборудования.

Рассмотрев особенности, принцип работы и обозначения трансформаторов НТМИ, можно правильно выбрать устройство, соответствующее потребностям потребителей.

Источник

Схемы защит трансформаторов напряжения от феррорезонанса

Как сделать заказ

Варианты схем, разработанных конструкторами ОАО «СЗТТ» для защиты трансформаторов напряжения от феррорезонанса.

Схема защиты от феррорезонанса

Краткое описание и преимущества применения

Антирезонансная трехфазная группа 3хЗНОЛ(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через высокоомные резисторы.

Антирезонансная трехфазная группа 3хЗНОЛ(П)

Антирезонансная трехфазная группа 3хЗНОЛ(П) с заземлением нейтрали через высокоомные резисторы — это самая распространенная схема защиты трансформаторов напряжения от феррорезонанса, которая применяется в сетях на класс напряжения (6-10) кВ.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополнительные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4 А.

Также трехфазные группы выпускаются со встроенным защитным предохранителем, что обеспечивает дополнительную защиту обмоток ВН от сверхтоков при феррорезонансе.

Применяется как стандартное решение для защиты трансформаторов напряжения от феррорезонанса в сети.

Антирезонансная трехфазная группа 3хЗНОЛ(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через высокоомные резисторы и устройством СЗТн.

Антирезонансная трехфазная группа 3хЗНОЛ.04(П)

Антирезонансная трехфазная группа 3хЗНОЛ(П) с заземлением нейтрали через высокоомные резисторы и устройством СЗТн практически не имеет отличий от предыдущего варианта. Отличие лишь в том, что в дополнительные обмотки соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, включаются устройство СЗТн . Устройство можно применять одновременно с защитным реле и сопротивлением 25 Ом. Параллельное подключение не влияет на защитные функции СЗТн.

Применение устройства СЗТн значительно повышает антирезонансные свойства трехфазной группы.

Применяется как стандартное решение для защиты трансформаторов напряжения от феррорезонанса в сети.

Антирезонансная трехфазная группа 3хЗНОЛ.04(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через дополнительный трансформатор напряжения нулевой последовательности.

Антирезонансная трехфазная группа 3хЗНОЛ.04(П)-01

Антирезонансная трехфазная группа 3хЗНОЛ.04(П) с заземлением нейтрали через реактор состоит из трех однофазных заземляемых трансформаторов напряжения, соединенных в звезду с выведенной нейтралью, и дополнительного трансформатора напряжения нулевой последовательности (ТНП), который включается между нейтралью звезды и землей. Вывод «Х» ТН, входящих в звезду, рассчитан на полную изоляцию, что позволяет испытывать внутреннюю изоляцию ТН полным уровнем приложенного напряжения промышленной частоты.

ТНП позволяет измерять напряжение нулевой последовательности , а его большое реактивное сопротивление эффективно предотвращает возникновение устойчивого феррорезонанса.

Данная схема для защиты от феррорезонанса является наиболее эффективной, универсальной и может применяться в широком диапазоне ëмкостных параметров сетей, класса напряжения (6-35) кВ.

Антирезонансная трехфазная группа 3хНОЛ(П) на базе однофазных незаземляемых трансформаторов напряжения.

Антирезонансная трехфазная группа 3хНОЛ(П)

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью разработана трехфазная группа 3хНОЛ-6(10), состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ-6(10) – отсутствие заземляемого вывода с ослабленной изоляцией. Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Внутреннюю

изоляцию трансформаторов можно испытывать приложенным одноминутным напряжением промышленной частоты.

Возможно изготовление трансформаторов с основной и дополнительной вторичной обмоткой. Дополнительная обмотка предназначена для питания цепей собственных нужд и не является измерительной.

Антирезонансная схема с R/C –гасителями.

Антирезонансная схема с R/C-гасителями

Антирезонансная схема с R/C – гасителями. В схеме могут быть использованы заземляемые или незаземляемые трансформаторы напряжения. В случае использования заземляемых трансформаторов напряжения, R/C – гасители и трансформаторы напряжения включаются параллельно в сеть, по схеме звезда / звезда. В случае с использованием незаземляемых трансформаторов, R/C – гасители включаются по схеме звезда, трансформаторы напряжения по схеме открытого или полного треугольника.

Схемы с R/C – гасителями применяются, как правило, для защиты трансформаторов напряжения от воздействия перенапряжений, низкого качества электрической энергии и других негативных факторов влияющих на надежность трансформаторов напряжения.

Схема 5 разработана совместно с партнером — ООО «Экспертный центр технологических решений» г. Екатеринбург. Подробная информация по ссылке.

Источник