Меню

Защита блока питания по входному напряжению



Простые схемы электронных предохранителей для блоков питания.

Эффективные средства защиты источников питания от КЗ и перегрузки по току на
мощных полевых переключающих МОП-транзисторах.
Плавный пуск (Soft Start) — нужен ли он блоку питания с быстродействующей защитой.

На странице (ссылка на страницу) мы познакомились с несколькими простыми схемами электронных предохранителей, предназначенных для работы в составе блоков питания. Главное назначение этих устройств — защита как самих БП, так и подключаемых к ним узлов от короткого замыкания (КЗ) или превышения тока, которое может возникнуть в них в силу той или иной причины.

Основными преимуществами таких устройств защиты (по сравнению с плавкими предохранителями) являются возможность введения регулировки тока срабатывания и высокое быстродействие, позволяющее в большинстве случаев предотвратить выход из строя электронного оборудования.
Основной недостаток, как не странно, тот же самый — высокое быстродействие, приводящее к ложным срабатываниям в начальный момент включения источника питания при наличии в нагрузке значительной ёмкостной составляющей (например, могучих электролитов, часто являющихся обязательным атрибутом многих усилителей мощности).
Перемещение этих электролитов с выхода на вход электронного предохранителя во многих случаях приводит к положительному результату, однако, если мы хотим поиметь универсальный блок питания с возможностью работы с различными устройствами, в том числе и с электролитами на борту, приходится озадачиваться и таким прибамбасом, как плавный пуск (или Soft Start по буржуйски).

Давайте более подробно рассмотрим две, на мой взгляд, наиболее удачные схемы электронных предохранителей, бегло описанных на странице по ссылке.
Схема, приведённая на Рис.1, относится к устройствам с резистивным датчиком тока, позволяющим заранее произвести точный расчёт номиналов элементов, а также ввести плавную (посредством переменного резистора) или ступенчатую (посредством переключателя) регулировку тока срабатывания.

Рис.1 Схема электронного предохранителя для защиты от КЗ и перегрузки по току

На элементах Т1 и Т2 выполнен транзисторный аналог тиристора со стабильным напряжением срабатывания

0,6В. Ток срабатывания этого тиристора, а соответственно и всего предохранителя зависит от номинала резистора R4, который рассчитывается по формуле: R4 (Ом) ≈ 0,6/Iср (А) .
При желании ввести в электронный предохранитель плавную регулировку тока срабатывания, R4 следует заменить на цепочку из последовательно соединённых: постоянного резистора, рассчитанного на максимальный ток, и проволочного переменного номиналом, рассчитанным под минимальный ток срабатывания.
Суммарная мощность, рассеиваемая на этих резисторах при максимальном токе, равна Р(Вт) ≈ 0,6 * Iср (А) .

При включении блока питания и условии отсутствия в нагрузке недопустимых токов предохранитель автоматически устанавливается в рабочее (открытое) состояние. При превышении тока напряжение на R4 достигает уровня открывания Т1 и транзисторный эквивалент тиристора (Т1, Т2) срабатывает и притягивает уровень напряжения на затворе Т3 к напряжению на его истоке, что приводит к закрыванию полевика.
Для возврата электронного предохранителя в рабочее (открытое) состояние необходимо: либо выключить и снова включить источник питания, дождавшись, когда напряжение на его выходе упадёт до нуля, либо нажать кнопку сброса S1.

Если входное напряжение, подаваемое на предохранитель, не превышает 20В, то цепочку R1 D1 допустимо исключить, а нижний вывод R3 подключить к минусу.

Применение источника тока на полевом транзисторе Т4 обусловлено желанием обеспечить ток через светодиод Led1 (индикатор наличия выходного напряжения) на постоянном уровне, независимо от приложенного к предохранителю напряжения. Если электронный предохранитель предполагается использовать при фиксированном напряжении питания, то для простоты этот транзистор можно заменить резистором.

Посредством несложных манипуляций в приведённое выше устройство можно добавить функцию плавный пуск (Soft Start), позволяющую электронному предохранителю избегать ложных срабатываний в начальный момент включения источника питания при наличии в нагрузке электролитических конденсаторов значительной ёмкости. Рассмотрим получившуюся схему на Рис.2.

Рис.2 Электронный предохранителя для защиты от КЗ и перегрузки (положительная полярность)

В начальный момент включения источника питания конденсатор С3 замыкает цепь затвора полевого транзистора Т3 на его исток, заставляя его находиться в закрытом состоянии. По мере заряда конденсатора напряжение на нём (а соответственно и разница потенциалов между истоком и затвором) плавно растёт, что приводит к постепенному открыванию полевика. Длительность данного переходного процесса (от полного закрытия до полного открывания) составляет 15. 20 миллисекунд, чего вполне достаточно для значительного снижения стартовых токов заряда даже очень ёмких электролитов, расположенных в нагрузке.

Для того чтобы после срабатывания защиты вернуть предохранитель в рабочее состояние и сохранить функцию плавного пуска, необходимо не только сбросить транзисторный аналог тиристора, но и дождаться полного разряда конденсатора С3. В связи с этим кнопка сброса перенесена в цепь питания и выполняет функцию обесточивания всего устройства, а дополнительный резистор R7 ускоряет разряд С3 до комфортных 0,3. 0,4 секунд.

Диод D3 выполняет функцию устранения выбросов отрицательной полярности, возникающих на конденсаторе С3 при размыкании S1, а D2 — функцию отсечения этого конденсатора от цепи затвора при срабатывании защиты, что позволяет обойтись без потери быстродействия предохранителя. Диоды могут быть любыми с допустимыми напряжениями, превышающими величину напряжения питания.

Включение датчика тока и коммутирующего транзистора в цепь питания (в нашем случае — в положительную цепь), а не земляную шину позволяет с лёгкостью осуществить релизацию защитного устройства для двуполярных источников. Приведём схему предохранителя и для отрицательной шины двуполяного блока питания.

Читайте также:  Временные напряжения при сварке

Рис.3 Электронный предохранителя для защиты от КЗ и перегрузки (отрицательная полярность)

Всем хороши эти устройства защиты с резистивными датчиками, особенно для цепей с умеренными токами (до 10А). Однако если возникает необходимость предохранять устройства, для которых рабочими являются токи в несколько десятков, а то и сотен ампер, то мощность, рассеиваемая на резистивном датчике, может оказаться чрезмерно высокой. Так, при максимальном токе в нагрузке равном 20А, на резисторе рассеется около 12Вт, а при токе 100А — 60Вт.
Уменьшать уровень срабатывания электронного предохранителя (скажем до 100мВ) посредством введения в схему чувствительного элемента ОУ или компаратора — не самая хорошая затея, ввиду того, что помехи, гуляющие по шинам земли и питания, в сильноточных цепях могут превышать эти пресловутые 100мВ. В таких ситуациях приходится искать другие решения.
Датчик магнитного поля — геркон и несколько сантиметров толстого провода могут стать выходом из положения в источниках питания с максимальными токами вплоть до десятков и сотен ампер.

Датчик тока на герконе

Рис.4 Датчик тока на герконе

При прохождении тока через обмотку, намотанную поверх датчика (Рис.4), внутри неё возникает магнитное поле, которое приводит к замыканию контактов геркона.
Намотав обмотку из десяти (или любого другого количества) витков и измерив ток срабатывания геркона, можно масштабировать это значение на любой интересующий нас ток.
Так например, если геркон КЭМ-1 при десяти витках замыкается при токе через обмотку около 15А, то, намотав 2 витка, мы увеличим ток срабатывания в 5 раз, т. е. до 75 А, а перемещая геркон внутри катушки, сможем регулировать это ток в некоторых пределах вплоть до 85. 90 А.
К достоинствам герконов также можно отнести и относительно высокое быстродействие. Время срабатывания у них, как правило, не превышает 1. 2 миллисекунд.
Всё, что теперь остаётся — это нарисовать триггерную схему мощного транзисторного ключа, управляемого герконовым токовым датчиком.

Рис.5 Электронный предохранителя для защиты от КЗ и перегрузки с датчиком тока на герконе

Схема, приведённая на Рис.4, довольно универсальна и позволяет осуществлять защиту устройств от перегрузки в широком диапазоне входных напряжений (9. 80 вольт) без изменения номиналов элементов.
Устройство состоит из транзисторной защёлки, выполненной на элементах Т1 и Т2, и находится в устойчивом состоянии до момента подачи на базу транзистора Т2 короткого положительного или отрицательного импульса.
Для того, чтобы включить электронный предохранитель необходимо нажать на нефиксируемый включатель S1, подав на базу Т2 импульс положительной полярности.
Срабатывает защита от импульса отрицательной полярности, который формируют контакты геркона SF1.
Мощный P-канальный полевой транзистор Т1 следует выбирать с некоторым запасом, исходя из тока срабатывания электронного предохранителя. Если транзистор не удовлетворяет токовым и мощностным характеристикам — допустимо использовать параллельное включение нескольких полупроводников.
Цепочка D1 R6 защищает полевик от недопустимых уровней Uзи при входных напряжениях свыше 20В. Если предохранитель предполагается использовать с меньшими подаваемыми напряжениями, то эту цепочку вполне допустимо исключить.

Источник

О роли варисторов/терморезисторов в блоках питания

Качественные блоки питания обеспечивают долговременную надежную и безаварийную работу вычислительного оборудования и другой техники.

Так как при майнинге используются мощные импульсные источники питания, питающие дорогостоящее оборудование, то их выход из строя влечет за собой весьма неприятные последствия.

В связи с этим стоит разобраться с некоторыми особенностями их работы, которые помогут избежать поломок, вызванных непониманием процессов, происходящих внутри импульсных источников питания.

Переходные процессы в радиоэлектронной аппаратуре и вычислительной технике

При эксплуатации любых электрических приборов в момент переключения возникают нелинейные переходные процессы, которые в некоторых случаях незаметны, а иногда приводят к выходу устройства из расчетного режима работы, что сопровождается повышенной нагрузкой на его элементы и может привести их к выходу из строя.

Переходные процессы всегда возникают в момент коммутации цепей с нагрузкой, имеющей индуктивный и/или емкостной характер. В большинстве случаев они являются вредными для работы устройства, поэтому конструкторы аппаратуры обычно предпринимают меры для их сведения до минимума.

Так как любой участок цепи имеет в той или иной мере LC-параметры, то нелинейные процессы всегда происходят в любой электронике. В мощных блоках питания, использующихся для майнинга, установлены конденсаторы и катушки большой емкости/индуктивности, поэтому переходные процессы в них могут быть очень значительными.

Кратковременный всплеск переменного напряжения, значительно превышающий нормальное значение:

Во время включения в работу блока питания большой мощности в его контурах протекают импульсы тока огромной величины. Всплески напряжения, вызванные переходными процессами, могут многократно превышать номинальное напряжение, протекающее в сети.

Всплески напряжения (voltage spikes), возникающие на графике синусоидального переменного напряжения, вследствие переходных процессов (transients):

Для борьбы со всплесками напряжения в момент включения блоков питания в них устанавливаются специальные защитные элементы. Они обычно справляются со своей ролью, но иногда, при нештатных ситуациях, не справляются со своими задачами. Чтобы не допускать их возникновения (или хотя бы свести до минимума), нужно знать принципы работы, назначение и состав защитных элементов на входе импульсного блока питания.

Зачем нужны защитные цепи на входе импульсных блоков питания

В качественных импульсных блоках питания обычно устанавливаются входные цепи, которые решают ряд проблем, среди которых:

Для защиты входных цепей блока питания от всплесков напряжения и тока используются варисторы (varistors) и термисторы, а также предохранители, варисторы, а также разрядники (surge arresters).

Читайте также:  Как изменить выходное напряжение трансформатора

MOV-варистор и термисторы с позитивным и негативным коэффициентом сопротивления:

Как обеспечивается защита от всплесков напряжения и тока на входе блока питания?

За защиту от всплесков напряжения на входе импульсного БП в рабочем режиме обычно отвечают варисторы и разрядники. Для защиты от бросков тока на входе применяют предохранители, а также термисторы.

Простейшая схема включения защитного варистора в блоке питания:

Схема включения защитных элементов на входе импульсного источника тока с применением варисторов и разрядников:

Как работает варистор?

Варистор — это резистор, сопротивление которого изменяется в зависимости от приложенного напряжения. В нормальных условиях оно очень большое (мегаОмы) и не оказывает особого влияния на работу электрической цепи при параллельном включении.

Вольт-амперная характеристика варистора:

При значительном повышении напряжения на варисторе сопротивление падает, это приводит к поглощению энергии всплеска и выделении ее в виде тепла.

Варисторы нужны для защиты радиоэлектронных устройств от бросков высокого напряжения за счет того, что их сопротивление резко падает с увеличением поданного на них напряжения:

Это спасает другие компоненты от выхода из строя, хотя иногда приводит к выгоранию самого варистора, спасающего своим героическим поведением более дорогие электронные элементы. Варисторы устанавливаются на входе БП перед диодным выпрямителем, так как они дополнительно выполняют фильтрующую функцию — гашение помех, возникающих при выключении диодного моста.

Варистор TVR 14471 на входе блока питания Be Quiet Dark Power Pro мощностью 1200 ватт с платиновым сертификатом:

Для чего в блоке питания применяются термисторы?

Термистор — это резистор, изменяющий свое сопротивление из-за температуры.

В блоках питания обычно используют термисторы с негативным температурным коэффицентом (NTC, Negative Temperature Coefficient), включенные последовательно с нагрузкой. В холодном состоянии они имеют сопротивление 6-12 Ом, поэтому при включении блока питания происходит их разогрев. Из-за нагрева сопротивление NTC-термисторов падает до 0.5-1 Ома и они уже не оказывают существенного влияния на работу устройства.

В дорогих блоках питания после успешного старта блока питания термисторы отключаются, ток начинает проходить через проводник с нулевым сопротивлением, что обеспечивает холодное состояние термистора (постоянную готовность к повторному включению БП), а также экономит электроэнергию, которая попусту рассеивается во время работы источника питания в штатном режиме.

Благодаря тому, что термистор принимает на себя «часть удара» в момент включения, остальные компоненты не страдают.

Простейшая схема включения защитного термистора на входе блока питания:

Варисторы обеспечивают защиту высоковольтной части блока питания от всплесков напряжения, а термисторы — от большого тока.

Варистор VZ1 и термистор TR101 на схеме блока питания Chieftec APS-550S мощностью 550W:

К чему может привести экономия на варисторах и термисторах в блоке питания?

В бюджетных блоках питания производители экономят на элементной базе и не устанавливают варисторов. Для защиты таких БП стоит использовать сетевые фильтры или UPS, имеющие в своем составе варисторы. Стоимость такой защиты оправдана значительным снижением возможного ущерба, который может появится в случае сгорания источника питания, питающего дорогостоящий компьютер.

В некоторых случаях защита от всплесков напряжения/тока, обеспечивающаяся варисторами и термисторами, не срабатывает. Это может происходит в случае неисправности варистора/термистора, а также если такой элемент нагрет и производится его включение расчете на его состояние при обычной температуре. Ситуация с медленным остыванием защитных варисторов (термисторов) может возникнуть в случае слишком быстрого повторного включения работавшего блока питания.

Если термистор не успевает остыть после выключения БП, то в момент повторной подачи высокого напряжения защита, обеспечиваемая гашением энергии на его высоком сопротивлении, не обеспечивается. Это может привести к плачевным последствиям.

Нагретый варистор не поглощает энергию импульса, появляющегося в момент включения из-за заряда емкостей электролитических конденсаторов и накопления энергии в индуктивностях, что обычно приводит к пробою транзисторов в высоковольтной части БП.

Благодаря этому, импульс высокого напряжения, поступающий на защищаемое устройство, гасится на варисторе. При сильном нагреве варистора в нем могут произойти необратимые изменения, приводящие к пробою или обрыву.

Пример платы дешевого блока питания Green Vision GV-PS S400:

Как определить исправность варисторов и термисторов?

На схемах блоков питания варисторы и термисторы имеют похожие обозначения в виде резистора с корпусом, перечеркнутым «клюшкой». Варисторы обычно стоят параллельно источнику тока и маркируются обозначением VR:

Термисторы обозначаются похоже:

Термисторы обычно включаются последовательно с нагрузкой, их сопротивление значительно меньше варисторов.

Проверка исправности варистора/термистора состоит в проведении двух действий:

  • визуальный осмотр на наличие повреждений, следов прогара, взудтий и прочих безобразий;
  • проверка сопротивления омметром — исправный варистор должен иметь большое сопротивление (несколько мегаОм) в обоих направлениях при комнатной температуре, терморезистор на входе блока питания — несколько Ом. При прозвонке варистора следует обращать внимание на место его установки. Если параллельно ему включены другие электронные элементы, то проверять сопротивление нужно после выпаивания варистора с платы.

Что делать майнерам для сведения к минимуму проблем из-за переходных процессов в блоках питания?

При наладке компьютеров, в том числе использующихся для майнинга, иногда возникают ситуации, когда из-за зависания системы приходится часто принудительно выключать-включать блок питания. В этом случае стоит делать перерыв на несколько минут перед повторным включением блока питания, чтобы он успел остыть. Это одинаково важно и для дорогих блоков питания, в которых установлен полный набор защитных элементов, включая варисторы и терморезисторы. Это связано с тем, что они не успевают восстановиться в случае очень быстрого повторного включения устройства с горячими внутренними компонентами.

Читайте также:  Плакат стой напряжение 150х300мм 1шт

При выборе блоков питания следует обращать внимание на наличие в них цепей защиты. Наличие варистора на входе источника питания обычно свидетельствует о стремлении его изготовителей обеспечить высокое качество и надежность изделия.

Если в использующемся на компьютере блоке питания не установлены входные защитные цепи, содержащие варисторы, блокировочные конденсаторы и термисторы, то стоит дополнительно установить качественный сетевой фильтр-удлинитель, содержащий хотя бы минимальный набор элементов, включающий варистор.

Фотография платы качественного сетевого фильтра с варисторами:

Варистор синего цвета на входе сетевого фильтра среднего качества:

Дешевый, якобы сетевой фильтр, на самом деле являющийся простым удлинителем/разветвителем с выключателем (не содержит варисторов и других защитных элементов):

При покупке входного фильтра следует учитывать, что большинство устройств, продаваемых в торговых сетях под таким названием на самом деле являются простыми удлинителями/разветвителями розеток, в лучшем случае содержащими узел защиты от короткого замыкания. Элементы защиты от бросков напряжения содержатся только в единицах из них.

В случае перебоев в работе компьютеров (не только тех, которые используются для майнинга), стоит дать время на остывание устройства перед его очередным включением. В противном случае еще не успевшие остыть защитные элементы не смогут выполнить свою функцию, что с большой степенью вероятности приведет к поломке.

Вам также может понравиться

Видеокарты AMD Radeon RX630 и 640 в майнинге

Источник

Все виды защит в компьютерных блоках питания

Приветствую вас, друзья! При работе любого электронного устройства могут возникнуть «завихрения», которые при отсутствии страховки, способны вывести его из строя, а в случае с БП в ПК – еще и несколько компонентов в придачу. Тема сегодняшней публикации – защита в блоках питания, с описанием всех необходимых опций. И так начнем.

Power Good

Из-за специфики конструкции устройства, при включении, напряжение на выходе достигает необходимой величины не мгновенно, а по истечении 0,02 секунд.

Для того, чтобы исключить подачу пониженного напряжения к потребителям энергии, что может негативно сказаться на их работе, и обеспечить необходимые номиналы в 3,3, 5 и 12 Вольт, в блоках ATX выделена специальная линия, которая подает сигнал о нормальной работе БП.

Маркируется такой кабель серым цветом и, как и остальные, подключается к материнской плате. При отсутствии сигнала на линии, компьютер попросту не включится.

Защита от перепадов напряжения

От перенапряжения и его недостатка, компьютер защищает одна и та же схема, отключающая девайс, если напряжение на любой из линий не соответствует номинальному. Обозначается функция английской аббревиатурой UVP / OVP.

Некоторое неудобство в том, что контрольные точки, при достижении которых срабатывает защита, могут находиться на некотором удалении от номинального напряжения, но при этом устройство будет соответствовать спецификации ATX.

Например, допускается подача напряжения до 15 Вольт, однако при длительной работе в таком режиме, комплектующие могут попросту перегореть.

Защита от перегрузки по току

Как мы помним, сила тока – еще одна, не менее важная его характеристика. Согласно международным стандартам оргтехники, один проводник не может передавать более 240 Вольт-Ампер, то есть 240 Ватт, в случае с постоянным током.

Максимально нагруженная цепь с напряжением 12 Вольт передаст не более 20 Ампер. При таком раскладе создать БП мощностью более 300 Ватт, не получится.

Для обхода этого ограничения, выводы 12 Вольт разбиваются на несколько групп с отдельной защитой по току (OCP) для каждой. При этом некоторые производители откровенно халтурят, используя только одну защитную схему, к которой подключаются все выводы, а срабатывает защита уже при 40 Амперах.

Определить «на глаз», какой именно подход использован, возможно только при разборке устройства и проверке его электрических цепей. Поэтому советую покупать комплектующие только тех брендов, в качестве продукции которых, вы уверены.

Защита от короткого замыкания

От КЗ блок питания защищает простая схема SCP, которая используется уже пару десятков лет. Для активации, достаточно пары транзисторов, при этом вовсе необязательно задействовать систему мониторинга рабочих параметров устройства.

Защита от перегрева

OTP выключает девайс, когда его температура достигает заданного значения. Схема присутствует только в качественных устройствах и базируется на паре термисторов, прикрепленных к радиатору или печатной плате.

Более сложный вариант – когда при превышении температуры, термистор заставляет быстрее вращаться кулер, регулируя рабочие параметры.

Защита по питанию

OPP или OPL – опциональный вид защиты, реализованный, с помощью специального контроллера или мониторинговой микросхемы. Схема контролирует количество тока, потребляемого из сети, и отключает БП при превышении определенного порога.

Найти любые по мощности и прочим характеристикам блоки питания для компьютера, а также все остальные комплектующие, вы можете в этом интернет-магазине .

Также советую ознакомиться с публикациями «Что значит PFC в блоке питания» и «Сертификаты БП для ПК». Рейтинг лучших устройств вы найдете здесь.

Спасибо за внимание и до следующих встреч на страницах моего блога! Подпишитесь на новостную рассылку, чтобы быть в курсе последних обновлений.

Источник