Меню

Введение мощность переменного тока



Мощность переменного тока

date image2017-11-30
views image1824

facebook icon vkontakte icon twitter icon odnoklasniki icon

Для цепей переменного тока различают активную, полную и реактивную мощности.

Активная мощность представляет собой действительную мощ­ность переменного тока, аналогичную мощности, развиваемой постоянным током. Она производит полезную работу; может быть преобразована с помощью электродвигателей в механическую мощ­ность, механическую энергию; измеряется в ваттах (Вт) и опреде­ляется по формуле

Р = IU cos ф. (1.23)

Полной мощностью называют максимально возможную величи­ну активной мощности, развиваемую переменным током при за­данных значениях напряжения и силы тока и при наиболее благо­приятных условиях, а именно, когда coscp = 1. Полная мощность обозначается латинской буквой 5 1 и измеряется в вольт-амперах (В-А). Из определения полной мощности следует выражение

Сравнивая между собой формулы (1.23) и (1.24), находим со­отношение между активной и полной мощностями:

(1.26)

Полной мощностью (кВА) принято измерять мощность гене­раторов переменного тока, машин, производящих электроэнер­гию, и трансформаторов, аппаратов, предназначенных для преоб­разования электрической энергии одного напряжения в электри­ческую энергию другого напряжения. Полная мощность этих ма­шин определяется произведением номинальных (нормальных) ве­личин их напряжения и силы тока (т.е. величин этих параметров, на которые рассчитаны машины). А активная их мощность зависит от коэффициента мощности, при котором они работают (Р.= Scoscp). В свою очередь этот коэффициент мощности зависит от соотноше­ния величин активного и реактивного сопротивления, включен­ных в цепь, иными словами, от характера электроприемников, питаемых данным генератором или трансформатором.

Реактивная мощность. Для рассмотрения реактивной мощнос­ти необходимо иметь представление об активной и реактивной со­ставляющих переменного тока. Сравнивая между собой формулы для определения мощности переменного и постоянного тока, мож­но видеть, что на месте полной величины силы тока I в формуле мощности стоит выражение Icosφ, где cosφ — величина, меньше единицы (и только в отдельных случаях равная ей). Отсюда следует, что в цепях переменного тока не весь ток создает полезную, активную мощность, а только некоторая его часть, которая на­зывается активной составляющей тока.

Проекция вектора тока на горизонтальное направление, перпендикулярное вектору напряжения, равная Isincp, называется ре­активной составляющей переменного тока. Реактивная составляющая тока не участвует в создании активной мощности.

Произведение действующего в цепи на­пряжения на реактивную составляющую тока носит название реактивной мощности и обо­значается латинской буквой Q. Реактивная мощность измеряется в единицах, называе­мых «вар». Из приведенного определения ре­активной мощности вытекает соотношение

где Q — реактивная мощность, вар; U— напряжение, В; /— сила тока, A; sinφ — числовой коэффициент, зависящий от угла сдвига фаз в данной цепи.

Реактивная мощность, так же как и реактивная составляющая тока, характеризует собой ту энергию, которая идет на создание магнит­ного поля индуктивности или электрического поля конденсатора (если последний включен в данную цепь). Эта энергия в процессе протека­ния переменного тока в цепях со сдвигом фаз совершает непрерыв­ные колебания между источником энергии и ее потребителем.

Активная, реактивная и полная мощности переменного тока связаны между собой соотношением

S 2 =P 2 +Q 2 . (1.28)

Это соотношение можно представить как векторную диаграм­му, получаемую на основании диаграммы напряжений или токов, носящую название «треугольника мощностей» (рис. 1.9). Два катета этого треугольника представляют собой в том или ином масштабе активную и реактивную мощности (соответственно в кВт и квар), а гипотенуза — полную мощность (кВ А). Угол φ численно равен углу сдвига фаз тока и напряжения в цепи. Значение косинуса это­го угла называют коэффициентом мощности.

Источник

Мощность переменного тока — понятие, виды и формулы

Общее понятие

Электрическое напряжение определяется как отношение работы поля по переброске пробного заряда из одной заданной точки в другую к размеру потенциала. При дислокации единичного резерва выполняется работа, которая равняется напряжению на искомом участке. Общая мощность получают умножением работы электрического поля для единичного заряда на число потенциалов за определенную единицу времени.

В переменной электрической цепи выделяется 3 вида мощности:

  • активный P;
  • реактивный Q;
  • полного типа S.

В цепи переменного электричества формула для расчета постоянного тока применяется только для вычисления мгновенной мощности. Этот показатель претерпевает изменения во времени и почти не имеет практического смысла для всех остальных расчетов. Среднезначимый показатель мощности требует временной интеграции. Мгновенная мощность объединяется в течение определенного промежутка для расчета величины в магистрали с периодическим изменением силы переменного потока и синусоидального напряжения.

Применяется концепция комплексных чисел для связывания всех трех видов мощности. Это понятие обозначает, что в переменной цепи нагрузка выражается подобным числом так, что активная разновидность представляется действительной составляющей. Реактивный показатель выступает мнимым показателем, а полная мощность показывается в форме модуля. В этих расчетах принимает участие угол сдвига фаз φ, который является аргументом баланса мощностей в цепи переменного тока.

Активная мощность

Активная скорость преобразования выражается также через взаимное отношение силы потока, напряжения к значению активной составляющей сопротивления. В магистрали синусоидального и несинусоидального движения электронов активная нагрузка приравнивается к сумме аналогичных значений на отдельных участках.

Для определения среднего периодического размера используется активная мощность переменного тока, формула расчета P = U . I . cos φ (косинус), где:

  1. U — мощность.
  2. I — сила потока.
  3. φ — угол смещения фаз.

Средний показатель мгновенной скорости преобразования в однофазной цепи берется в виде среднеквадратичного значения тока и напряжения с определенным углом сдвига. В цепях несинусоидального электричества мощность приравнивается к сумме соответствующих показателей отдельных перемещений. С помощью активной мощности характеризуется интенсивность необратимого видоизменения электроэнергии в другие разновидности, например, электромагнитную или тепловую.

Проходящая мощность используется в качестве активной в концепции длинных магистралей для анализа электромагнитных течений, протяженность которых сопоставляется с размерностью волны. Искомое значение рассчитывается как разница между понижающейся и отражающейся мощностями. От свойств коэффициента углового смещения зависят полученные показатели отрицательной или положительной нагрузки активного типа.

Реактивная характеристика

Для обозначения применяется дополнительно единица вольт-ампер реактивный (вар). В русских аналогах используется вар, а международные специалисты применяют var. В РФ единица допускается для электротехнических расчетов в форме внесистемного значения.

Нахождение производится по формуле P = U . I . sin φ (синус), где:

  1. U — среднеквадратичная мощность.
  2. I — среднеквадратичная сила потока.
  3. φ — угол фазного смещения, значения синуса, определяются по таблицам.

При диапазоне показателя от 0 до 90º (ток отстает от напряжения, а нагрузка носит активно-индуктивный вид) синус φ будет иметь положительное значение. При угловом сдвиге от 0 до -90º (поток электронов опережает нагрузку, мощность отличается активно-емкостным свойством) константа всегда показывает отрицательный знак. Реактивная мощность характеризует напряженность, которая возникает в электромеханических приборах и цепях при изменении энергетических волн поля в магистрали переменного синусоидального потока.

В физическом смысле реактивная нагрузка показывает энергию, которая перекачивается от источника тока на конденсаторы, индукторы, двигательные обмотки, а впоследствии возвращается к источнику за один колебательный период. Реактивная мощность не принимает участия в работе электротока. В случае положительной характеристики устройство потребляет, а нагрузка с отрицательным знаком говорит о производстве энергии.

Это обстоятельство рассматривается в условном контексте, т. к. почти все энергопотребляющие приборы, например, двигатели асинхронной работы, а также полезная нагрузка, подаваемая через трансформатор, относятся к активно-индуктивным видам. Синхронные двигатели электростанций одновременно производят и потребляют энергию в зависимости от максимальной величины электротока возбуждения в роторных обмотках. Эта особенность применяется для координации уровня нагрузки в магистрали в электротехнике.

С помощью современных преобразователей производится компенсация реактивной нагрузки во избежание перегрузок и для увеличения коэффициента мощности электроустановок. Приборы более точно оценивают размер энергии, которая поступает в обратном направлении от индуктора к источнику переменного тока.

Полная нагрузка

Показатель используется в физике для описания потребляемой мощности, которая прилагается к подводящим агрегатам электросети с использованием резисторов. Суммируются параметры ЭДС распределительных щитков, кабелей, проводов, ЛЭП, трансформаторов.

Читайте также:  Способы расчета электрической мощности

Полную нагрузку можно рассчитать по формуле S = U . I, где:

  1. S — параметр полной нагрузки (В/а).
  2. U — расчетная нагрузка в генераторе.
  3. I — комплексный показатель силы тока в сочетании с обмоточным значением.

Параметр темпа преобразований зависит от характеристик применяемого тока, а не от свойств фактически использованной нагрузки. По этой причине полная мощность распределительных электрощитов и трансформаторных агрегатов измеряется в вольт-амперах, а значение ватт к ней не применяется.

Работа в различных условиях

Модуль комплексного показателя интенсивности передвижения равняется показателю полной нагрузки. Действительная составляющая часть приравнивается к активной силе, а мнимая считается реактивным видом. Имеет место положительный или отрицательный знак, что зависит от интенсивности загруженности цепи. Комплексная мощность должна соответствовать сопряженному электрическому сопротивлению. Положительная нагрузка характеризуется соотношением Р > 0, а знак минус проявляется в случае Р

Коэффициент скорости преобразования

Мощностной коэффициент является показателем потребления тока при присутствии реактивного компонента и искажающей нагрузки. Значение коэффициента отличается от понятия косинуса сдвигаемого угла. Второе понятие характеризуется смещением протекающего переменного тока, напряжения и используется только при синусоидальном токе и силе равного значения.

Коэффициент равняется отношению расходуемой нагрузки к ее полному значению. При этом работа совершается за счет активного вида преобразования. При синусоидальном токе и вольтаже полная нагрузка находится в виде суммы реактивной и активной форм. Активная нагрузка приравнивается к усредненному произведению силы тока и напряжения и не может быть выше произведения аналогичных среднеквадратических размерностей. Мощностной коэффициент показывается в диапазоне от 0 до 1 или ставится в процентах от 0 до 100.

При математическом расчете числовой множитель интерпретируется в качестве косинуса угла между токовыми векторами и направлением приложения вольтажа. Поэтому при синусоидальных характеристиках размерность коэффициента может совпадать с косинусом угла. Если применяется только синусоидальный вольтаж, а ток используется несинусоидальный с нагрузкой без реактивного компонента, то числовой переходник равняется части нагрузки при первых искажениях потребительского тока.

Если реактивный элемент присутствует в нагрузке, то, помимо мощностного коэффициента, указывается характер работы (емкостно-активный или индуктивно-активный). Коэффициент в этих случаях отличается и является отстающим или опережающим значением.

Практическое применение и коррекция

Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.

Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.

КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.

Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.

Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии. Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя. При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.

Источник

Реферат: Электрические цепи переменного тока

Федеральное агентство по образованию РФ

Курского государственного политехнического колледжа

по дисциплине: «Электротехника»

на тему: «Электрические цепи переменного тока»

Асеев Евгений Сергеевич

студент 2 курса специальности

«Атомные станции и установки»

Проверил: Горлов А.Н.

Принцип получения переменной ЭДС. Действующее значение тока и напряжения

Метод векторных диаграмм

Цепь переменного тока с активным сопротивлением и индуктивностью

Цепь переменного тока с разной нагрузкой

Последовательная цепь, содержащая активное сопротивление, индуктивность и емкость

Резонанс напряжений и токов

Проводимость и расчет электрических цепей

До конца 19 века использовались только источники постоянного тока – химические элементы и генераторы. Это ограничивало возможности передачи электрической энергии на большие расстояния. Как известно, для уменьшения потерь в линиях электропередачи необходимо использовать очень высокое напряжение. Однако получить достаточно высокое напряжение от генератора постоянного тока практически невозможно. Проблема передачи электрической энергии на большие расстояния была решена только при использовании переменного тока и трансформаторов.

1. Принцип получения переменной ЭДС

Переменный ток имеет ряд преимуществ по сравнению с постоянным: генератор переменного тока значительно проще и дешевле генератора постоянного тока; переменный ток можно трансформировать; переменный ток легко преобразуется в постоянный; двигатели переменного тока значительно проще и дешевле, чем двигатели постоянного тока.

В принципе переменным током можно назвать всякий ток, который с течением времени изменяет свою величину, но в технике переменным током называют такой ток, периодически изменяет и величины и направление. Причем среднее значение силы такого тока за период Т равно нулю. Периодическим переменный ток называется потому, что через промежутки времени Т, характеризующие его физические величины принимают одинаковые значения.

В электротехнике наибольшее распространение получил синусоидальный переменный ток, т.е. ток, величина которого изменяется по закону синуса (или косинуса), обладающий рядом достоинств по сравнению с другими периодическими токами.

Переменный ток промышленной частоты получают на электростанциях с помощью генераторов переменного тока (трехфазных синхронных генераторов). Это довольно сложные электрические машины, рассмотрим только физические основы их действия, т.е. идею получения переменного тока.

Пусть в однородном магнитном поле постоянного магнита равномерно вращается с угловой скоростью ω рамка площадью S .(рис. 1).

Магнитный поток через рамку будет равен:

где α – угол между нормалью к рамке n и вектором магнитной индукции B. Поскольку при равномерном вращении рамки ω= α/t, то угол α будет изменяться по закону α= ω t и формула(1.1) примет вид:

Читайте также:  Мощностью максимальная сила тока которых может

Поскольку при вращении рамки пересекающий ее магнитный поток все время меняется, то по закону электромагнитной индукции в ней будет наводиться ЭДС индукции Е :

Е= -dФ/dt =BSωsinωt =E0sinωt (1.3)

где Е0 = BSω – амплитуда синусоидальной ЭДС. Таким образом, в рамке возникнет синусоидальная ЭДС, а если замкнуть рамку на нагрузку, то в цепи потечет синусоидальный ток.

Величину ωt = 2πt/Т = 2πft, стоящую под знаком синуса или косинуса, называют фазой колебаний, описываемых этими функциями. Фаза определяет значение ЭДС в любой момент времени t. Фаза измеряется в градусах или радианах.

Время Т одного полного изменения ЭДС (это время одного оборота рамки) называют периодом ЭДС. Изменение ЭДС со временем может быть изображено на временной диаграмме (рис. 2).

Величину, обратную периоду, называют частотой f = 1/T. Если период измеряется в секундах, то частота переменного тока измеряется в Герцах. В большинстве стран, включая Россию, промышленная частота переменного тока составляет 50Гц (в США и Японии – 60 Гц).

Величина промышленной частоты переменного тока обусловлена технико-экономическими соображениями. Если она слишком низка, то увеличиваются габариты электрических машин и, следовательно, расход материалов на их изготовление; заметным становится мигание света в электрических лампочках. При слишком высоких частотах увеличиваются потери энергии в сердечниках электрических машин и трансформаторах. Поэтому наиболее оптимальными оказались частоты 50 – 60 Гц. Однако, в некоторых случаях используются переменные токи как с более высокой, так и более низкой частотой. Например, в самолетах применяется частота 400 Гц. На этой частоте можно значительно уменьшить габариты и вес трансформаторов и электромоторов, что для авиации более существенно, чем увеличение потерь в сердечниках. На железных дорогах используют переменный ток с частотой 25 Гц и даже 16,66 Гц.

Действующие значения тока и напряжения

Для описания характеристик переменного тока необходимо избрать определённые физические величины. Мгновенные и амплитудные значения для этих целей неудобны, а средние значения за период равны нулю. Поэтому вводят понятие действующих значений тока и напряжения. Они основаны на тепловом действии тока, не зависящем от его направления.

Действующими значениями тока и напряжения называют соответствующие параметры такого постоянного тока, при котором в данном проводнике за данный промежуток времени выделяется столько же теплоты, что и при переменном токе. Найдем соотношение между действующими и амплитудными значениями.

В активном сопротивлении R при постоянном токе I за период постоянного тока T по закону Джоуля-Ленца выделится следующее количество теплоты:

При переменном токе i в том же сопротивлении R за бесконечно малый промежуток времени dt выделится следующее количество теплоты:

где мгновенное значение тока i определяется формулой:

Тогда теплота, выделяемая переменным током за период Т равна:

Интеграл (1.7) вычисляется следующим образом:

Второй интеграл равен нулю, поскольку это интеграл от периодической функции за один период. Приравняв, согласно определению (1.4) и (1.8), получим:

Таким образом, действующее значение переменного тока в √2 раз меньше его амплитудного значения. Аналогично вычисляются действующие значения напряжения и ЭДС:

U = U0/√2; E = E0/√2 (1.10)

Действующие значения обозначаются прописными латинскими буквами без индексов.

2. Метод векторных диаграмм

Метод векторных диаграмм – то есть изображение величин, характеризующих переменный ток векторами, а не тригонометрическими функциями, чрезвычайно удобен.

Переменный ток, в отличие от постоянного, характеризуется двумя скалярными величинами – амплитудой и фазой. Поэтому для математического описания переменного тока необходим математический объект, также характеризуемый двумя скалярными величинами. Существуют два таких математических объектов – это вектор на плоскости и комплексное число. В теории электрических цепей и те и другие используются для описания переменных токов.

При описании электрической цепи переменного тока с помощью векторных диаграмм каждому току и напряжению сопоставляется вектор на плоскости в полярных координатах, длина которого равна амплитуде тока или напряжения, а полярный угол равен соответствующей фазе. Поскольку фаза переменного тока зависит от времени, то считается, что все векторы вращаются против часовой стрелки с частотой переменного тока. Векторная диаграмма строится для фиксированного момента времени.

Более подробно построение и использование векторных диаграмм будет изложено ниже на примерах конкретных цепей.

3. Цепь переменного тока с активным сопротивлением и индуктивностью

Рассмотрим цепь (рис. 3), в котором к активному сопротивлению (резистору) приложено синусоидальное напряжение:

U (t) = U0sin ωt (1.11)

Тогда по закону Ома ток в цепи будет равен:

I (t) = U (t)/R = U0sin ωt/R = I0 sin ωt (1.12)

Мы видим, что ток и напряжение совпадают по фазе. Векторная диаграмма для этой цепи приведена на рисунке 4:

Выясним, как изменяется со временем мощность в цепи переменного тока с резистором. Мгновенное значение мощности равно произведению мгновенных значений тока и напряжения:

p (t) = i(t)u(t) = I0 U0 sin ωt = I0 U0(1- cos2 ωt)/2 (1.13)

Из этой формулы мы видим, что мгновенная мощность всегда положительна и пульсирует с удвоенной частотой (рис. 5):

Это означает, что электрическая энергия необратимо превращается в теплоту независимо от направления тока в цепи.

Вычислим среднее значение мощности за период:

Pср = 1/T ∫ p(t)dt = I0U0/2T ∫ dt − I0U0/2T ∫ cos2ωt dt = (I0U0/2T) ∙T = IU = I R

поскольку второй интеграл равен нулю как интеграл от периодической функции за период.

Мы видим, что в цепи с резистором вся электрическая энергия необратимо превращается в тепловую энергию. Те элементы цепи, на которых происходит необратимое преобразование электрической энергии в другие виды энергии (не только в тепловую), называются активными сопротивлениями. Поэтому резистор представляет собой активное сопротивление.

Рассмотрим цепь (рис. 6), в котором к катушке индуктивности L, не обладающей активным сопротивлением (R=0), приложено синусоидальное напряжение (1.11):

Протекающий через катушку переменный ток создает в ней ЭДС самоиндукции eL. Тогда в соответствии со вторым правилом Кирхгофа можно записать:

Согласно закону Фарадея, ЭДС самоиндукции равна:

Подставив (1.16) в (1.15), имеем:

dI/dt = − eL/L = U/L = U0 sin ωt/L (1.17)

Интегрируя это уравнение, получим:

I =− U0cos ωt/ω L + const = U0sin (ωt − π/2)/ ωL+ const (1.18)

где const – постоянная интегрирования, которая говорит о том, что в цепи может быть и постоянный ток. При отсутствии постоянного тока она равна нулю. При отсутствии постоянного тока она равна нулю. Окончательно имеем:

I = I0 sin (ωt − π/2) (1.19)

где I0 = U0/ ωL. Деля обе части на √2, получим:

I = U/ ωL= U/ XL (1.20)

Соотношение (1.20) представляет собой закон Ома для цепи с идеальной индуктивностью, а величина XL= ωL называется индуктивным сопротивлением.

Из формулы (1.19) мы видим, что в рассмотренной цепи ток отстает по фазе от напряжения на π/2. Векторная диаграмма для этой цепи изображена на рисунке 7.

Вычислим мощность, потребляемую цепью с чисто индуктивным сопротивлением.

Мгновенная мощность равна:

p (t)= I0 U0 sin ωt(ωt − π/2)= − I0 U0 sin2 ωt/2 (1.21)

Мы видим, она изменяется по закону синуса с удвоенной частотой (рис. 8).

Положительные значения мощности соответствуют потреблению энергии катушкой, а отрицательные — возврату запасенной энергии обратно источнику.

Читайте также:  Как мощность электродвигателя зависит от частоты вращения

Средняя за период мощность равна:

Pср = 1/T ∫ p(t)dt = (− I0 U0 /2T) ∫ sin2 ωt dt = 0 (1.22)

Мы видим, что цепь с индуктивностью мощности не потребляет – это чисто реактивная нагрузка.

5. Цепь переменного тока с разной нагрузкой

Цепь переменного тока с активно-индуктивной нагрузкой

Рассмотрим электрическую цепь (рис. 9), в котором через катушку индуктивности L, обладающую активным сопротивлением R, протекает переменный ток:

I = I0 sin ωt (1.23)

Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности и на резисторе:

Напряжение на резисторе, как показано выше, совпадает по фазе с током:

UR = U0R sin ωt (1.25)

а напряжение на индуктивности равно ЭДС самоиндукции со знаком “минус” (по второму правилу Кирхгофа):

UL = L(dI/dt)= I0 ωLcos ωt = U0Lsin(ωt + π/2) (1.26)

где U0L= I0 ωL (1.27)

Напряжение на индуктивности опережает ток на π/2. Переходя к формуле (1.27) к действующим значениям переменного тока (I = I0/√2; U= U0/√2), получим:

Это закон Ома для цепи с идеальной индуктивностью (т.е. не обладающей активным сопротивлением), а величина XL= ωL называется индуктивным сопротивлением. Построив векторы I, UR и UL и воспользовавшись формулой (1.24), мы найдем вектор U.

Как видно из векторной диаграммы, модуль вектора U равен

U= √ UR + UL = √ I R + I (ωL) = I√ R + (ωL) = IZ (1.29)

называется полным сопротивлением цепи.

Сдвиг по фазе φ между током и напряжением также определяется из векторной диаграммы:

tg φ = UL/ UR = ωL/ R (1.31)

В данной цепи угол сдвига фаз между током и напряжением зависит от значений R и L и изменяется в пределах от 0 до π/2.

Теперь рассмотрим как изменяется со временем мощность в цепи с активно-индуктивной нагрузкой. Мгновенные значения тока и напряжения можно представить в виде:

U(t) = U0 sin ωt (1.32)

I(t) = I0 sin(ωt − φ)

Тогда мгновенное значение мощности равно:

p(t)= I(t) U(t) = I0 U0 sin ωt sin(ωt − φ)=(I0 U0/2)[cosφ − cos(2ωt − φ)] = =(I0 U0/2)(1− cos2ωt) cosφ − (I0 U0/2) sin2ωt sin φ (1.33)

Мгновенное значение мощности имеет две составляющие: первое слагаемое — активная, и второе — реактивная (индуктивная). Поэтому средняя за период мощность не равна нулю:

Pср = 1/T ∫ pdt = (I0 U0/2T) cosφ ∫dt − (I0 U0/2T) cosφ ∫ cos2ωt dt −

−(I0 U0/2T) sin φ ∫ sin2ωt dt = (I0 U0/2) cosφ (1.34)

и является активной мощностью. Соответствующая этой мощности электрическая энергия превращается в активном сопротивлении R в теплоту.

Цепь переменного тока с емкостью

Рассмотрим электрическую цепь, в которой переменное напряжение (1.11) приложено к емкости С (рис. 11). Мгновенное значение тока в цепи с емкостью равно скорости заряда на обкладках конденсатора:

I = C (dU/dt) = ωCU0 cos ωt = I0 sin (ωt + π/2) (1.36)

В этой цепи ток опережает напряжение на π/2. Переходя в формуле (1.37) к действующим значениям переменного тока (I = I0/√2; U= U0/√2), получим:

Это закон Ома для цепи переменного тока с емкостью, а величина

Xc= 1/ωC называется емкостным сопротивлением. Векторная диаграмма для этой цепи показана на рис. 12.

Найдем мгновенную и среднюю мощность в цепи, содержащей емкость. Мгновенная мощность равна:

p(t)= i(t) u(t) = I0U0 sin (ωt + π/2) sin ωt = IUsin2 ωt (1.39)

Мгновенная мощность изменяется с удвоенной частотой (рис. 13). При этом положительные значения мощности соответствуют заряду конденсатора, а отрицательные — его разряду и возврату запасенной энергии в источник. Средняя за период мощность здесь равна нулю

Pср = 1/T ∫ p(t)dt = IU/T ∫ sin2 ωt dt = 0 (1.40)

т.к. в цепи с конденсатором активная мощность не потребляется, а проходит обмен электрической энергией между конденсатором и источником.

Цепь переменного тока с активно-емкостной нагрузкой

Реальная цепь переменного тока с емкостью всегда содержит активное сопротивление — сопротивление проводов, активные потери в конденсаторе и т.п. Рассмотрим реальную цепь, состоящую из последовательно соединенных конденсатора С и активного сопротивления R (рис. 14). В этой цепи протекает ток I = I0 sin ωt .

В соответствии со вторым правилом Кирхгофа, сумма напряжений на резисторе и на емкости равна приложенному напряжению:

Напряжение на резисторе совпадает по фазе с током:

UR = U0R sin ωt (1.42)

а напряжение на конденсаторе отстает от тока:

UC = U0C sin (ωt − π/2) (1.43)

Построив векторы I,UR и UC и воспользовавшись формулой (1.41), найдем вектор U. Векторная диаграмма для этой цепи показана на рисунке 15.

Как видно из векторной диаграммы, модуль вектора U равен

U =√ UR + UC =√ I R + I (1/ωC) = I √ R + (1/ωC) = IZ1 (1.44)

называется полным сопротивлением цепи.

Сдвиг по фазе φ между током и напряжением в данной цепи также определяется из векторной диаграммы:

tg φ = UC/ UR = (1/ωC)/ R (1.46)

В рассмотренной цепи угол сдвига фаз между током и напряжением зависит от значений R и C и изменяется в пределах от 0 до π/2.

Рассмотрим теперь, как изменяется со временем мощность в цепи с активно – емкостной нагрузкой. Мгновенные значения тока и напряжения можно представить в виде:

I (t) = I0 sin (ωt + φ) (1.47)

Тогда мгновенное значение мощности равно:

p(t)= I(t) U(t) = I0 U0 sin ωt sin(ωt + φ)=(I0 U0/2)[cosφ − cos(2ωt + φ)] = =(I0 U0/2)(1− cos2ωt) cosφ + (I0 U0/2) sin2ωt sin φ (1.48)

Мгновенное значение мощности имеет две составляющие: первое слагаемое — активная, а второе — реактивная (емкостная). Поэтому средняя за период мощность не равна нулю:

Pср =1/T ∫ pdt = I0U0/2T cosφ ∫ dt − I0U0/2T cosφ ∫ cos2 ωtdt + I0U0/2T ∙

sin φ ∫ sin2ωt dt = I0U0/2T cosφ (1.49)

и является активной мощностью. Соответствующая этой мощности электрическая энергия превращается в активном сопротивлении R в теплоту.

6. Последовательная цепь, содержащая активное сопротивление, индуктивность и емкость

Теперь рассмотрим цепь переменного тока, содержащую индуктивность, емкость и резистор, включенные последовательно (рис. 16).

Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности, на емкости и на резисторе:

U = UL + UC + UR (1.50)

Напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на π/2, а напряжение на емкости отстает от тока по фазе на π/2. Можно записать эти напряжения в следующем виде:

UR = U0R sin ωt = I0R sin ωt

UL = U0Lsin (ωt + π/2) = I0 ωL (ωt + π/2) (1.51)

UC = U0C sin (ωt − π/2) = (I0/ωC) sin (ωt − π/2)

Поскольку нам известны амплитуды и фазы этих векторов, мы можем построить векторную диаграмму и найти вектор U (рис. 17)

Из полученной векторной диаграммы мы можем найти модуль вектора приложенного к цепи напряжения U и сдвиг по фазе φ между током и напряжением:

U = √ UR + (UL − UC) = I √ R +( ωL− 1/ωC) = IZ (1.52)

Z = √ R +( ωL− 1/ωC) (1.53)

называется полным сопротивлением цепи. Из диаграммы видно, что сдвиг по фазе между током и напряжением определяется уравнением:

Источник

Adblock
detector