Меню

Вольтметр для измерения напряжения высокой частоты



Вольтметр: принцип действия, как подключить и пользоваться

Измерительный прибор вольтметр

Необходимость применения вольтметра возникает у большинства домовладельцев, автолюбителей, не говоря уже о радиолюбителях. Определить наличие напряжения в домашней сети при отсутствии света в доме, измерить вольтаж аккумуляторной батареи в случае её разряда, настроить собранную радиолюбителем конструкцию — во всех этих ситуациях без его использования не обойтись.

Типы и виды вольтметров

Все вольтметры можно разделить по: принципу действия, назначению, способу применения и конструкции.

Типы и виды вольтметров

По принципу действия устройства делятся на группы:

  • Вольтметры электромеханические.
  • Электронные вольтметры.

Рассмотрим конкретно каждую группу.

Электромеханические и электронные вольтметры

Электронный вольтметр

Эти измерительные приборы являются устройствами прямого преобразования. Измеряемая величина в них преобразуется напрямую в показания на шкале устройства отсчёта. Она предназначена для визуальной оценки измеряемого напряжения.

Шкала выглядит как последовательность отметок с числами и составляет неподвижную часть прибора. Расстояние между двумя соседними отметками — цена деления шкалы. Шкалы могут быть линейными и нелинейными, односторонними (отметка «0» расположена у начала) и двусторонними (отметка «0» расположена в середине). На шкале обычно наносится число, обозначающее класс точности прибора.

Подвижная часть устройства состоит из рамки, находящейся между полюсов постоянного магнита. По обмотке рамки протекает ток. С подвижной рамкой связана стрелка, по величине угла отклонения которой можно по шкале оценить значение измеряемого параметра. Этот угол напрямую зависит от тока, протекающего через обмотку рамки, а значит и от величины напряжения, которое измеряется.

Такие приборы используют для измерения магнитоэлектрический метод. Он наиболее часто используется в электромеханических приборах для измерения различных физических величин.

Следует отметить, что такие приборы отдельно используются довольно редко. Как правило, они являются составной частью более сложных по схемному исполнению устройств.

Кроме, магнитоэлектрического способа измерения в электромеханических приборах используют и другие: электромагнитный, электродинамический, ферродинамический, термоэлектрический, способ выпрямления.

Применение этих приборов исходя из требований, предъявляемых к измерителям напряжения, более предпочтительно, чем электромеханических. А требования эти таковы — уменьшение методической погрешности измерения.

Для измерения напряжений в различных точках схемы вольтметр подключают параллельно измеряемой цепи. Поэтому его использование не должно искажать реальную картину. Он не должен шунтировать участок схемы, следовательно, его входное сопротивление должно быть большим (в идеале стремиться к бесконечности).

Вольтметры электронные можно разделить на две группы. Одну составляют аналоговые приборы, другую цифровые. Различия между ними заключается в форме предоставления информации о результатах измерения.

Возможные аналоги

Входное напряжение, величину которого необходимо измерить, поступает на масштабирующее устройство. Оно выполнено в виде многопредельного резисторного делителя высокого класса точности. Количество резисторов соответствует количеству диапазонов измерения напряжения.

После резисторного делителя сигнал поступает на усилитель постоянного тока (УПТ). Его назначение — усилить входное напряжение, прошедшее через делитель, до величины, требуемой для нормальной работы устройства индикации. УПТ также необходим для повышения входного сопротивления прибора и согласования его с низкоомной обмоткой рамки указателя магнитоэлектрической системы.

Устройство электромеханического прибора, по которому в аналоговых вольтметрах производится отсчёт измеряемой величины напряжения, был рассмотрен выше.

Высокое входное сопротивление этого прибора определяется в основном схемой УПТ. В ней широко используется применение транзисторов, включённых по схеме эмиттерного повторителя сигнала, или полевых транзисторов.

Точность аналоговых вольтметров определяется классом точности резисторов входного устройства и классом точности головки микроамперметра, по стрелке которого производится отсчёт измеренного напряжения.

Для измерения напряжений малой величины применение в схеме прибора усилителя постоянного тока не всегда приводит к достаточной точности измерений.

В милливольтметрах измерения производятся на переменном токе. Постоянное входное напряжение преобразуется в переменное с помощью собственного модулятора. Усилитель переменного тока обладает лучшими характеристиками в отношении линейности, дрейфа нуля, коэффициента усиления, мало зависящего от температуры. После усиления переменное напряжение детектируется. Стабильное выпрямленное постоянное напряжение поступает на стрелочный электромеханический прибор.

Если вольтметром необходимо измерить переменное напряжение, то его схема изменится. Существуют две разновидности схем.

В одной из них входное напряжение детектируется и затем усиливается усилителем постоянного тока.

В схемах с другим построением усиливается сначала входное переменное напряжение усилителем переменного тока. После этого сигнал выпрямляется детектором.

В зависимости от требований, предъявляемых к результатам измерений, выбирается либо одно построение схемы, либо другое.

Первый вариант используется там, где необходимо произвести измерение в широком диапазоне частот (от 10Гц до 1000МГц).

Применение второго варианта построения имеет место при измерении очень малых переменных напряжений (единицы микровольт).

Цифровые вольтметры

Цифровой вольтметр

Измерители этого вида в процессе обработки представляют входное напряжение в виде ступенек (дискретных значений). Его значение отображается на индикаторе прибора в цифровом виде.

Входное устройство (ВУ) производит определение масштаба входного сигнала, его фильтрацию от помех. При измерении переменного напряжения производится его выпрямление. Таким образом, схема ВУ содержит делитель напряжения, фильтр сетевых помех, усилитель сигнала.

Фильтр необходим для повышения точности измерений, потому что сигнал помехи может восприниматься в виде полезного сигнала и после её дискретизации на выходном индикаторе отобразятся цифры, не соответствующие измеряемой величине полезного входного сигнала.

В «продвинутых» моделях дополнительно имеются устройства, осуществляющие выбор полярности и пределов измерения автоматически.

Аналого-цифровой преобразователь (АЦП) осуществляет представление напряжения на входе прибора в виде интервала времени, длительность которого зависит от его величины. Этот интервал заполняется импульсами, которые вырабатывает собственный генератор вольтметра. Счётчик по командам устройства управления производит их подсчёт и на цифровом индикаторе прибора появляется цифровое значение величины, пропорциональное количеству импульсов.

Поскольку электронные компоненты ВУ имеют значительное входное сопротивление, цифровые вольтметры очень незначительно влияют на сопротивление участка цепи, на которой производится измерение. Точность их показаний намного выше, чем у всех предыдущих вольтметров.

Работать с прибором стало значительно проще. Нет необходимости производить дополнительный пересчёт полученного значения с учётом выбранной шкалы и установленного множителя (как у аналоговых вольтметров). Но требования, предъявляемые к качеству питающего напряжения очень высоки.

Основные характеристики приборов

Измерение напряжения вольтметром

Чем больше внутреннее сопротивление вольтметра, тем меньше его влияние на измеряемую цепь. Поэтому приборы с более высоким входным сопротивлением обладают большей точностью при проведении измерений.

Для того чтобы оценить возможности прибора, его преимущества по сравнению с другими, сделать окончательный вывод о возможности его приобретения необходимо внимательно ознакомиться с его техническими параметрами, к которым относятся:

  • внутреннее сопротивление вольтметра;
  • диапазон измеряемых вольтметром напряжений;
  • диапазон частот переменного напряжения;
  • погрешность измерения прибора.

Диапазон необходимо учитывать исходя из того, с какими величинами напряжений придётся иметь дело. Большинство вольтметров позволяют проводить измерение напряжений от нескольких десятков милливольт до сотен вольт. Этот диапазон вполне приемлем для многих пользователей. Исключение составляют милливольтметры с расширенным диапазоном и киловольтметры.

Читайте также:  При каком напряжении загорается светодиод

Погрешность показывает возможное отклонение измеряемой величины от эталонной. Определяется на этапе заводских испытаний прибора. Выражается в процентах или долях процента.

Все эти параметры представлены в описании на конкретный прибор.

Самодельные устройства

Как сделать вольтметр своими руками, для чего он нужен, как устроен, как подключается вольтметр, как пользоваться вольтметром — вот неполный перечень вопросов, которые возникают у начинающих радиолюбителей и простых пользователей. Принцип действия вольтметра или принцип работы вольтметра был рассмотрен ранее при рассмотрении разных его типов и видов.

Вольтметр своими руками

При совсем небольших затратах можно самостоятельно его изготовить. Основной его частью является стрелочный измерительный прибор. На шкале присутствует обозначение напряжения — латинская буква «V». Конечно, желательно иметь вольтметр с необходимым диапазоном измерения. В левой части шкалы должна быть отметка «О», а в правой — число, которое показывает предельное значение напряжения, измеряемого этим прибором.

Это значение определяется величиной добавочного резистора, находящегося в корпусе готового прибора и током полного отклонения стрелки микроамперметра.

Часто при работе приходится измерять значения напряжений в широком диапазоне. Для обеспечения допустимой точности приходится использовать одну общую шкалу с набором добавочных сопротивлений. Их количество зависит от величин напряжений, которые необходимо измерять при работе.

Использование добавочных сопротивлений дают возможность измерять напряжения, величины которых больше последнего числа шкалы. Для измерения напряжений меньшего значения с достаточной точностью необходимо найти прибор с числом максимального значения шкалы меньшей величины или переделать существующий путём изменения величины добавочного сопротивления в корпусе прибора.

Входное сопротивление стрелочного вольтметра оценивается показателем относительного (удельного) сопротивления. Единица его измерения — кОм/В. То есть для разных значений измеренного напряжения величина входного сопротивления прибора будет разной. Отсюда вывод — наибольшей точности измерения соответствует правая часть шкалы. Внутреннее сопротивление вольтметра здесь имеет большее значение и его подключение оказывает меньшее негативное воздействие на работу схемы. Необходимо выбирать прибор с большей величиной удельного сопротивления.

Если приходится измерять переменное напряжение, то при небольшом усложнении схемы самодельного прибора можно решить и эту задачу. Входное напряжение необходимо выпрямить, сделать его однополярным.

Ток для нормальной работы микроамперметра прибора должен протекать по обмотке рамки прибора только в одном направлении (клеммы прибора имеют маркировку «+» и «-«). Только в этом случае стрелка прибора отклонится. Выпрямление может быть однополупериодным или двухполупериодным. Это зависит от выбранной схемы выпрямителя. При определении реальной величины напряжения показания стрелочного прибора разделить примерно на 3 (выпрямление однополупериодное) или на 1,5 (выпрямление двухполупериодное).

Несколько советов начинающим

Применение прибора вольтметра

Эти советы помогут новичкам, которым впервые приходится использовать вольтметр в своей работе. Их немного:

  • Подключение вольтметра.
  • Соблюдение полярности.

Полярность подключаемых измерительных щупов вольтметра должна соответствовать полярности напряжения, указанного на схеме.

Вольтметр всегда надо подсоединять параллельно измеряемой цепи. Этим он отличается от амперметра, который включается в разрыв. Для двухполупериодной схемы выпрямления переменного тока полярность измерительных щупов можно не учитывать. Щупы надо держать так, чтобы руки касались только изолированной их части.

Originally posted 2018-03-28 15:34:30.

Источник

Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. методическая разработка по химии (8 класс)


Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета
Вольтметр

(вольт + греч. μετρεω «измеряю») — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается
параллельно
нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

Содержание

  • 1 Классификация и принцип действия 1.1 Классификация
  • 1.2 Аналоговые электромеханические вольтметры
  • 1.3 Аналоговые электронные вольтметры общего назначения
  • 1.4 Цифровые электронные вольтметры общего назначения
  • 1.5 Диодно-компенсационные вольтметры переменного тока
  • 1.6 Импульсные вольтметры
  • 1.7 Фазочувствительные вольтметры
  • 1.8 Селективные вольтметры
  • 2 Наименования и обозначения
      2.1 Видовые наименования
  • 2.2 Обозначения
  • 3 Основные нормируемые характеристики
  • 4 История
  • 5 См. также
      5.1 Другие средства измерения напряжений и ЭДС
  • 5.2 Прочие ссылки
  • 6 Литература и документация
      6.1 Литература
  • 6.2 Нормативно-техническая документация
  • 7 Ссылки

    Ссылки

    • [metrob.ru/HTML/Stati/SI/vmetr.html Поверка и калибровка широкополосных вольтметров переменного напряжения]
    • Войнаровский П. Д.
      Электрические измерительные аппараты // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
    • [www.youtube.com/watch?feature=plpp&v=1O6Rlv_Mhtc Вольтметр. Измерение напряжения (учебный видеоролик)]
    • Вольтметр // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

    Классификация и принцип действия

    Классификация

    • По принципу действия вольтметры разделяются на: электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
      постоянного тока;
  • переменного тока;
  • импульсные;
  • фазочувствительные;
  • селективные;
  • универсальные
  • По конструкции и способу применения:
      щитовые;
  • переносные;
  • стационарные

    Аналоговые электромеханические вольтметры

    • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения. ПРИМЕРЫ:
      М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
      ПРИМЕРЫ:
      Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
      ПРИМЕРЫ:
      Т16, Т218

    Аналоговые электронные вольтметры общего назначения

    Вы поможете проекту, исправив и дополнив его.

    Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

    Цифровые электронные вольтметры общего назначения

    Дополнительные сведения: Мультиметр#Цифровые мультиметры

    Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

    Диодно-компенсационные вольтметры переменного тока

    Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

    • ПРИМЕРЫ:
      В3-49, В3-63 (используется пробник 20 мм)
    Читайте также:  Стабилизатор напряжения 12 вольт одним блоком

    В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

    Импульсные вольтметры

    Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

    Вы поможете проекту, исправив и дополнив его.

    Фазочувствительные вольтметры

    Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

    Селективные вольтметры

    Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

    • ПРИМЕРЫ:
      В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановоль

    вольтметры Вольтметр для чего

    Основные технические характеристики вольтметров

    Для оценки технических характеристик измерительных приборов принято пользоваться такими показателями:

    1. Внутреннее сопротивление. В идеале этот показатель должен быть максимально высоким. В этом случае минимизируется влияние прибора на цепь, в которую он подключается. Другими словами, чем больше внутреннее сопротивление вольтметра, тем точнее измерение;
    2. Диапазон измеряемых напряжений. Большинство вольтметров являются универсальными и измеряют напряжение в диапазоне от десятков милливольт до 1000 вольт. Этих пределов вполне достаточно для большинства измерений. Однако специалисты широко используют специальные приборы, которые позволяют измерять очень маленькие значения напряжений с высокой точностью – милли и даже микровольтметры (с точностью до тысячных и миллионных частей вольта) и киловольтметры, измеряющие высокие напряжения порядка тысяч вольт. Работа с этими приборами требует наличия некоторых специальных знаний, навыков и допуска к эксплуатации электроустановок с напряжением свыше 1000 В, чтобы не вывести из строя приборы (милли- и микровольтметры) или не допустить электротравмирования и гибели обслуживающего персонала (при работе с киловольтметрами);
    3. Точность измерения (погрешность). Этот параметр характеризует возможные отличия показаний прибора от реального напряжения в цепи;
    4. Диапазон частот измеряемого переменного напряжения.

    Наименования и обозначения

    Видовые наименования

    • Нановольтметр
      — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
    • Микровольтметр
      — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
    • Милливольтметр
      — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
    • Киловольтметр
      — вольтметр для измерения больших напряжений (более 1 кВ)
    • Векторметр
      — фазочувствительный вольтметр

    Обозначения

    • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия Д
      xx — электродинамические вольтметры
    • М
      xx — магнитоэлектрические вольтметры
    • С
      xx — электростатические вольтметры
    • Т
      xx — термоэлектрические вольтметры
    • Ф
      xx,
      Щ
      xx — электронные вольтметры
    • Ц
      xx — вольтметры выпрямительного типа
    • Э
      xx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
      В2-
      xx — вольтметры постоянного тока
  • В3-
    xx — вольтметры переменного тока
  • В4-
    xx — вольтметры импульсного тока
  • В5-
    xx — вольтметры фазочувствительные
  • В6-
    xx — вольтметры селективные
  • В7-
    xx — вольтметры универсальные

    См. также

    Другие средства измерения напряжений и ЭДС

    • Для измерения абсолютного значения: Потенциометр — точные измерения компенсационным методом
    • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
    • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени; в режиме измерения «с открытым входом» можно измерять и постоянное напряжение.
    • Электрометр — прибор, служащий для измерения электрического потенциала
  • Для измерения относительного значения:
      Измерители отношений напряжений
  • Измерители нестабильности напряжений
  • Преобразователи:
      Электронные преобразователи напряжений
  • измерительные трансформаторы напряжения
  • Меры:
      Нормальный элемент — однозначная мера
  • Калибраторы напряжения — многозначные меры

    Прочие ссылки

    • Вольт
    • Амперметр
    • Омметр
    • Мультиметр
    • Измерительный прибор
    • Радиоизмерительные приборы
    • Электроизмерительные приборы
    • Список параметров напряжения и силы электрического тока

    Принцип работы цифрового прибора

    Цифровой амперметр постоянного тока позволяет измерить и определить постоянный ток – как отрицательной, так и положительной полярности. На направление тока указывает точка, размещенная в крайнем правом разряде. Удобство применения данного устройства состоит в отсутствии необходимости подключения шунта. Амперметр цифровой постоянного тока может монтировать в источники питания, стойки приборов, стенды, зарядные устройства и прочее. Такой прибор советуют использовать, чтобы контролировать работу двигателей, DС-DС преобразователей, источников питания и инверторов.

    Будет интересно➡ Как подключить амперметр к цепи переменного или постоянного тока

    Амперметр постоянного тока цифровой включается спустя три минуты после подключения питания. В случае установки в зарядное устройство рекомендуется предварительно к выводам питания амперметра подключить конденсатор 470 mF 25 v. Индикатор не отображает незначащие нули. Учитывая обширный выбор диапазонов, амперметр с успехом функционирует в одном из двадцати вариантов режима работы. При этом каждый режим предполагает применение одного из трех шунтов: на мкА, мА или Амперы.

    Предел измерения колеблется в диапазоне 1мкА – 1000А. Для работы следует выбрать один из 60 предложенных пределов измерений.

    Как уже было отмечено, каждый режим работает на основе подходящего шунта. Следует помнить, что номинальное напряжение любого шунта не должно превышать 75мВ. В качестве примера можно рассмотреть режим 2, который работает только с шунтами 5мкА, 5мА или 5А. Для программирования режимов применяется пять джамперов.

    Перед включением модуля рекомендуется запрограммировать режим его работы. После включения модуль выдаст сведения относительно выбранного режима работы. Если, допустим, выбран режим измерения токов в пределах 25А, то включенный модуль будет мигать несколько раз «25.0», что указывает на режим работы «5». В таком случае необходимо использование одного из шунтов: 25А, 25мкА или 25мА. При выборе недопустимого режима будет мигать значок «Err», указывающий на ошибку.

    Как работает цифровой амперметр

    Следует помнить, что измерять можно только в одной полярности, если же ток измеряется в обратной полярности, то это будет отображаться, как «000». Для питания модуля предназначен встроенный литиевый аккумулятор CR2032, рассчитанный на двадцать дней бесперебойной работы. К тому же, источником питания может послужить внешняя батарея и любой другой источник с постоянным током 3В. Особенности подключения состоят в том, что внешний источник питания 3В следует подключить плюсом к контакту «3V», а минусом – к «0V».

    Читайте также:  Реле напряжения для генератора 90 ампер

    Еще одним обязательным условием является наличие гальванической развязки для внешнего источника питания от источника, который измеряет ток. Важно не забыть встроенный литиевый элемент при использовании внешнего источника питания. Чтобы сэкономить батарею, измеряя ток в автомобиле, можно воспользоваться реле, которое отключает питание модуля во время выключения зажигания. Сделанные самостоятельно шунты или резисторы можно использовать для малых токов. При этом рекомендуется применять металлопленочные резисторы, которые в меньшей степени зависят от температурного режима. Как правило, в устройстве используют константановую или манганиновую проволоку.

    Интересно почитать: что такое клистроны.

    Источник

    Радио-как хобби

    Часто в радиолюбительской практике возникает необходимость измерения и контроля высокочастотного напряжения небольших уровней-от десятков миливольт до единиц вольт. Конечно, лучше всего для этих целей использовать заводской ВЧ вольтметр.

    Но что делать, когда такого прибора нет под руками?

    Выход из положения-изготовления простой приставки- ВЧ пробника к цифровому мультиметру типа DT700D или ему подобным.

    У меня в моей мастерской тоже нет приличного ВЧ вольтметра. Да он мне особо и не нужен-вполне хватает точности и возможностей моего осциллографа С1-79 для контроля ВЧ напряжений. Но вот недавно столкнулся со свалившейся на голову проблемой-мой С1-79 отказал в самый неподходящий момент. О ремонте моего осциллографа рассказано в отдельной статье. Как назло-нужно было проверить наличие генерации в гетеродине приемника.

    Пришлось по-быстрому изготовить описываемый в этой статье простой ВЧ пробник к цифровому мультиметру. Суть этого решения-изготовление выносной высокочастотной детекторной головки, при помощи которой выпрямляется высокочастотное напряжение, а уже выпрямленное напряжение измеряет мультиметр. Эта идея стара как мир, и известна уже не один десяток лет.

    Для повторения выбрана конструкция, описанная в журнале «Радио» №8 за 2006 год.

    Схема из этой публикации:

    Здесь входные щупы Е1 и Е2 подключаются к исследуемой схеме. Через конденсатор С1 высокочастотное напряжение поступает на диод VD1. Далее выпрямленное напряжение поступает на цифровой вольтметр для непосредственного отсчета.

    Есть ряд важных моментов:

    -диод VD1 должен быть германиевым, типов ГД507, ГД508, Д311, Д18, Д20, и даже Д9;

    -цифровой мультиметр должен иметь входное сопротивление 1Мом, этому условию удовлетворяют дешевые мультиметры типа DT830, М830, М832, DT838 и подобные;

    Этот ВЧ-пробник позволяет измерять высокочастотное напряжение уровнями от 20 мВэфф до примерно 2…3 Вэфф. Верхний предел измеряемых уровней напряжений зависит от предельно допустимого обратного напряжения конкретного диода. У диода 1Д508 это напряжение около 8 В. Согласно рекомендаций в статье в журнале «Радио» №8 за 2006 год, стр.58-59, уровень измеряемого напряжений около 2…3 Вэфф уже будет предельным. Если применить диоды другого типа, с более высоким значением предельно допустимого обратного напряжения, соответственно, и уровни высокочастотных напряжений в этом случае можно будет измерять более высокие.

    ВЧ-пробник работает в диапазоне частот вплоть до 30 МГц, при этом обеспечивается удовлетворительная точность измерения. Но в общем случае, им можно регистрировать ВЧ напряжения частотами и до 100…200 МГц. Строго говоря, для более-менее точных измерений необходимо составить калибровочный график, о чем подробно рассказано в вышеупомянутой статье в журнале «Радио», но я этого не делал. Мне достаточно было просто видеть наличие ВЧ напряжения и его максимумы при регулировке.

    Но надо понимать, что чем меньше уровень измеряемого напряжения, тем больше будут занижены показания. Так, при измеряемых ВЧ напряжениях уровнем 1 В и выше, этот ВЧ пробник измеряет с относительно небольшой погрешностью. При уровне измеряемого ВЧ напряжения 200 мВ показания будут занижены в 1,5 раза. При уровне измеряемого ВЧ напряжения 20 мВ показания будут занижены примерно в 3 раза. Именно для учета этих погрешностей и нужна калибровочная таблица.

    В качестве корпуса использовал высохший маркер. Это предопределило и размеры платки ВЧ-пробника: длина 90 мм и ширина 9 мм:

    Детали ВЧ-пробника распаяны со стороны фольги:

    В качестве контакта Е1 использовал обычную стальную швейную иглу, которая припаяна к медной фольге платы. У такой иглы острый кончик, что обеспечивает отменный контакт с проверяемым узлом или блоком.

    Для удобства восприятия конструкции, на изображении ниже представлена монтажная схема:

    Для фиксации платы в корпусе маркера, к плате припаяна гайка с резьбой М2,5. Фиксирующий винт вставляется через отверствие в корпусе маркера и вворачивается в гайку. Это не позволяет плате двигаться внутри корпуса самопроизвольно:

    Собранный ВЧ-пробник (уже в корпусе маркера) подключается к мультиметру экранированным проводом. Всё это выглядит так:

    ВЧ пробник

    Повторюсь, что ВЧ-пробник рассчитан для работы с цифровыми мультиметрами с входным сопротивлением 1 МОм. Для калибровки подбирают резистор R1 так, чтобы при подаче на вход ВЧ-пробника синусоидального напряжения частотой сотни кГц или единицы МГц показания мультиметра были максимально близки к таковым эталонного вольтметра, например В3-38.

    Калибровку ВЧ пробника я проверил только при уровне входного напряжения 2 В и частотой 200 кГц. Сигнал подавал с генератора Г3-106. Цифровой мультиметр отобразил на индикатор 1970 мВ, что очень близко к уровню измеряемого напряжения. На этом я и завершил наладку и калибровку.

    Об области применения ВЧ-пробника.

    Пробник будет полезен при настройке и ремонте радиоприемников, их гетеродинов, настройке ДПФ и так далее. Присоединив ко входному щупе Е1 кусок провода в качестве антенны, этот пробник уже можно использовать как индикатор напряженности поля.

    На фото ниже пример проверки работоспособности гетеродина моего SDR приемника:

    Прибор показывает 1376 мВ. Гетеродин здесь работает на частоте 14 МГц. Как видно, вполне удобно этим ВЧ-пробником проверять наличие колебаний генераторов или гетеродинов.

    Еще один пример использования…

    Проверим работу генератора простого FM-радиомикрофона. Генератор этого радиомикрофона работает на частоте около 90МГц.

    Даже просто поднеся входной щуп к катушке индуктивности генератора, пробник уже регистрирует наличие колебаний:

    А так выглядит измерение напряжения на коллекторе транзистора генератора FM-радиомикрофона:

    Понятно, что показания прибора весьма далеки от истинных. Но цель здесь другая-убедиться простыми средствами в работоспособности устройства.

    Обращаю внимание, что несмотря на довольно высокую рабочую частоту генератора FM-радиомикрофона, подсоединение щупа ВЧ-пробника к коллектору транзистора генератора не срывает генерацию. Это говорит об очень небольшой входной емкости ВЧ-пробника и достаточно высоком входном сопротивлении. Другими словами, этот простой ВЧ-пробник можно смело применять при контроле работы и наладке устройств, которые работают на уже довольно серьезных частотах.

    Короткое видео с демонстрацией работы этого высокочастотного пробника:

    Источник

  • Adblock
    detector