Меню

Вид эпюры нормальных напряжений для прямоугольного сечения при изгибе



ISopromat.ru

Задача

Построить эпюру распределения нормальных напряжений для подобранного ранее прямоугольного сечения двухопорной балки с размерами h=155мм и b=80мм.

Прямоугольное сечение балки

Пример решения

Предыдущие пункты решения задачи:

Рассмотрим пример построения эпюры распределения нормальных напряжений в опасном сечении балки.

Прямоугольное сечение имеет три характерных точки:

Характерные точки прямоугольного сечения балки

Для построения эпюры достаточно найти значения в любых двух точках, потому что при изгибе нормальная составляющая полных напряжений по высоте сечения меняется линейно.

Формула расчета нормальных напряжений при изгибе

где Ix – осевой момент инерции сечения,
y – расстояние от оси х проходящей через центр тяжести сечения до точки в которой рассчитывается напряжение.

Очевидно, что на самой оси x (точка №2) где координата y=0 напряжения отсутствуют.

Наибольшие значения нормальных напряжений будут на максимальном удалении от оси x, то есть при ymax=h/2 (в точках 1 и 3).

Формула максимальных нормальных напряжений при изгибе

Расчет момента инерции сечения

Расчет максимальных напряжений

При изгибе верхний и нижний слой балки испытывают продольную деформацию разных знаков.

Знаки напряжений в точках 1 и 3 определяются по построенной ранее эпюре изгибающих моментов Mx.

Эпюра изгибающих моментов балки

В данном случае по ней видно, что в опасном сечении балки эпюра моментов имеет положительное значение (+47,6 кНм), что согласно правила знаков при изгибе говорит о том, что в рассматриваемом месте балки сжимаются верхние слои (нижние соответственно растягиваются).

Поэтому в соответствии с правилом знаков для напряжений, нормальные напряжения в верхней точке 1 будут отрицательны (потому что сжатие), а в точке 3 – положительны (растяжение) или σ т1=-148,6МПа, σ т3=148,6МПа.

По полученным данным строим эпюру

Эпюра нормальных напряжений балки при изгибе

Как видно по построенной эпюре, нормальные напряжения не превышают заданных допустимых значений, что говорит о том, что размеры прямоугольного сечения были подобраны верно, и прочность балки обеспечена.

Источник

Нормальные напряжения при изгибе. Эпюры напряжений

В сечении балки, взятом на участке чистого изгиба, возникает только один изгибающий момент

.

Следовательно, в сечении действуют нормальные напряжения σ (рис. 9.3).

Рис. 9.3. Схема внутренних сил при чистом изгибе

Продольная сила N и изгибающий момент Му будут равны нулю, т. е.

;

.

Из формулы для определения изгибающего момента Мх нельзя определить величину нормальных напряжений σ, так как неизвестно, как они распределены по сечению.

Задача определения напряжений σ в сечении балки является статически неопределимой. Пусть отдельное волокно при изгибе испытывает простое растяжение или сжатие. Тогда для него можно записать закон Гука как при растяжении:

Чтобы найти относительную деформацию ε на участке чистого изгиба, выделим элемент балки длиной dz и рассмотрим его деформацию.

Сечения mn и m1n1 остаются плоскими и поворачиваются на угол /2. Волокна нейтрального слоя искривляются, но их длина не изменяется. Радиус кривизны нейтрального слоя обозначим ρ. Тогда имеем:

dz = OO1 = ρdφ.

Волокно АВ, расположенное на расстоянии у от нейтрального слоя, удлиняется, радиус его кривизны составляет ρ + у (рис. 9.4).

Рис. 9.4. Схема деформации элемента балки длиной dz

Читайте также:  Измерительный преобразователь напряжения трехфазный

Относительное удлинение волокна:

.

Тогда .

Подставим данное выражение в формулу для Мх:

.

представляет момент инерции сечения относительно оси x, можно записать

.

.

Величина EJx называется жесткостью поперечного сечения при изгибе.

Из вышеприведенной формулы видно, что если балка изготовлена из однородного материала(Е = const) и имеет постоянное сечение (Jx = const), то при чистом изгибе (М = const) ее ось искривляется по дуге окружности (ρ = const). Подставим в формулу для определения σ значение кривизны, получим:

.

Из формулы видно, что нормальные напряжения распределяются по сечению неравномерно и достигают наибольшего значения в точках, наиболее удаленных от нейтральной оси. При положительном изгибающем моменте нижние волокна будут растянуты (ρ > 0), а верхние волокна сжаты (ρ

При положительном изгибающем моменте все волокна, расположенные выше нейтральной линии, являются сжатыми, а ниже ее – растянутыми.

Рис. 9.5. Эпюра распределения нормальных напряжений в сечениях

с горизонтальной осью симметрии

Максимальные нормальные напряжения возникают при у = уmax. Таким образом,

.

Отношение осевого момента инерции к расстоянию от наиболее удаленной точки сечения до нейтральной оси называется осевым моментом сопротивления, т. е.

.

Момент сопротивления измеряется в сантиметрах кубических (см 3 ) и зависит от формы и размеров поперечного сечения, тогда

.

Если сечение не имеет горизонтальной оси симметрии (рис. 9.6), то расстояния от нейтральной оси до крайних нижних и крайних верхних волокон различны.

Рис. 9.6. Эпюра распределения нормальных напряжений

в сечениях без горизонтальной оси симметрии

Обозначим их через hp и hссоответственно. Тогда напряжения в крайних волокнах выразятся формулами:

; .

9.3. Построение эпюр изгибающего момента М

и поперечной силы Q при изгибе

При расчете балок на изгиб необходимо знать законы распределения внутренних усилий в поперечных сечениях и уметь строить эпюры внутренних силовых факторов.

Рассмотрим три основных типа опорных связей балки.

1. Шарнирно-неподвижная опора (рис. 9.7, а- левая опора балки), ограничивающая горизонтальное и вертикальное перемещение опорной связи и лишающая систему двух степеней свободы.

2. Шарнирно-подвижная опора (рис. 9.7, а — правая опора балки), ограничивающая вертикальное перемещение опорной связи и лишающая систему одной степени свободы.

3. Жесткая заделка (рис. 9.7, б), не допускающая поворота и перемещений по вертикали и горизонтали сечения балки, примыкающего к опоре и лишающая систему трех степеней свободы.

Рассмотрим построение эпюр М и Q на конкретном примере (рис. 9.7, а). Решение задачи начинаем с вычерчивания расчетной схемы, приложив к балке внешние активные и реактивные силы. Заданная система является статически определимой, следовательно, из условий равенства нулю суммы моментов всех сил относительно шарнирных закреплений определяем вертикальные реакции в опорах:

;

.

Для определения реакции НА имеем:

откуда НА = 0.

Для проверки правильности вычислений воспользуемся условием равенства нулю суммы всех вертикальных сил Sу = 0, откуда получим:

, реакции найдены верно.

Читайте также:  Uniel стабилизатор напряжения 10000 инструкция

Рис. 9.7. Расчетная схема однопролетной балки

Для определения внутренних силовых факторов (изгибающего момента М(z) и поперечной силы Q(z)), как функций от продольной координаты z, воспользуемся методом сечений. Для получения этих зависимостей разбиваем балку на участки, границами которых являются следующие сечения: начало и конец балки; точки приложения сосредоточенных усилий; начало и конец действия распределенной нагрузки; сечения, в которых скачкообразно изменяется жесткость балки; точки, где происходит изменение положения элементов стержневой системы со сложной структурой.

Заданная балка (рис. 9.7, в) состоит из двух участков — первого (0 £ z1£ a) и второго (a £ z2 £ a + b). Рассматривая последовательно сечения, принадлежащие к первому и второму участкам, и равновесие отсеченных частей балки при действии на них всех внешних сил и внутренних усилий, составим общие уравнения для внутренних силовых факторов.

В системе координат yz, принятой на рис. 9.8, а, положительный момент вызывает растяжение нижних волокон балки. При построении эпюры М(z) положительные ординаты откладываются вниз от нулевой линии, отрицательные – вверх.

Рис. 9.8. Правило знаков для изгибающих моментов

и поперечных сил

Для поперечных сил, независимо от направления координатных осей, устанавливается следующее правило знаков: если результирующая поперечная сила Qy вращает рассматриваемую часть балки по ходу часовой стрелки, то она считается положительной, в противном случае — отрицательной (рис. 9.7, б). При построении эпюры Q(z) положительные ординаты откладываются вверх от нулевой линии, отрицательные – вниз.

Из условия равновесия SMx = 0; Sy = 0 отсеченной части балки (рис. 9.7, г), расположенной левее от сечения z1 (первый участок), имеем:

Для определения Mx и Qy на втором участке рассмотрим равновесие отсеченной части балки, расположенной правее от сечения z2 (рис. 9.7, г), т. е. SMx = 0; Sy = 0, откуда

Эпюры Mx и Qy построены на растянутых волокнах и изображены на рис. 9.9.

Рис. 9.9. Построение эпюр Мх и Qу при изгибе

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Эпюры касательных напряжений для прямоугольного, двутаврового, круглого сечений

Эпюры касательных напряжений прямоугольного сечения

При выводе формулы Журавского предполагалось: балка имеет прямоугольное поперечное сечение (рис. 7.11), поэтому

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат;изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат;изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат; изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

где y – расстояние от точки, в которой определяется касательное напряжение, до нейтральной оси x.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматПодставляя эти формулы в формулу Журавского, для касательных напряжений получим:

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Касательные напряжения изменяются по высоте поперечного сечения по закону квадратичной параболы (см. рис. 7.11).

При изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат(для наиболее удаленных от нейтральной оси точек) изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

Для точек, расположенных на нейтральной оси (при изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат), изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Эпюры касательных напряжений двутаврового сечения

Характерная особенность двутаврового сечения: резкое изменение ширины поперечного сечения (изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат), где полка соединяется со стенкой.

Читайте также:  Система впрыскивания цилиндра 5 активизация сторона высокого напряжения

Определим касательное напряжение в некоторой точке K (рис. 7.12), проведя через нее сечение, ширина которого равна толщине стенки: изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

Рассмотрим верхнюю отсеченную часть поперечного сечения (заштрихована на рис. 7.12), статический момент инерции которой относительно нейтральной оси x равен сумме статических моментов инерции полки и заштрихованной части стенки:

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Эпюра касательных напряжений для двутаврового сечения представлена на рис. 7.12, б.

Касательные напряжения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат, возникающие в точках полки двутавра, по формуле Журавского вычислять нельзя, поскольку при ее выводе использовалось допущение о равномерности распределения касательных напряжений по ширине поперечного сечения, что справедливо только если ширина сечения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматневелика. Однако очевидно, что касательные напряжения малы и не оказывают практического влияния на прочность балки. Эпюра касательных напряжений для двутаврового сечения показана штриховой линией (см. рис. 7.12, б).

Формула касательного напряжения в точке L ( где полка соединяется со стенкой):

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Наибольшие касательные напряжения возникают в точках, лежащих на нейтральной оси x.

Эпюры касательных напряжений круглого сечения

Для построения эпюры касательных напряжений круглого сечения выясним направление касательных напряжений при изгибе , возникающих в некоторой точке контура поперечного сечения стержня.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматРассмотрим произвольное поперечное сечение стержня (рис. 7.13, а).

Предположим: в некоторой точке контура К касательное напряжение при изгибе изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматнаправлено произвольно по отношению к контуру. Разложим касательное напряжение на две составляющие изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат, направленные соответственно по нормали и касательной к контуру. Если касательное напряжение изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматсуществует, то по закону парности касательных напряжений на поверхности стержня должно существовать равное ему по значению касательное напряжение при изгибе изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат. Поскольку поверхность стержня свободна от внешних сил, параллельных оси балки z, касательное напряжение на поверхности стержня изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати, следовательно, изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

Таким образом, в точке контура поперечного сечения, поверхность которого не нагружена продольными внешними нагрузками, касательное напряжение при изгибе направлено по касательной к контуру.

Покажем, что в вершине угла поперечного сечения стержня касательное напряжение равно нулю (рис. 7.13, б).

Предположим, что в вершине угла (в точке M) возникает касательное напряжение изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат. Разложим его на составляющие касательные напряжения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат. По закону парности касательных напряжений эти составляющие равны нулю, поскольку равны нулю напряжения на поверхности стержня изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромати изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат.

изображение Эпюры касательных напряжений прямоугольника двутавра круга сопромат

Задача вычисления касательных напряжений в произвольной точке балки круглого поперечного сечения усложняется. Однако если сделать предположение: в точках, расположенных на некоторой линии ab (рис. 7.14), касательные напряжения изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматпри изгибе направлены так, что все они пересекаются в точке О, и вертикальные проекции этих напряжений равномерно распределены вдоль линии ab, то формулу Журавского можно использовать для вычисления вертикальных проекций изображение Эпюры касательных напряжений прямоугольника двутавра круга сопроматпри построении эпюр касательных напряжений стержня круглого сечения . Вычисление остальных величин, входящих в формулу Журавского, производится, как и для прямоугольного поперечного сечения .

Наибольшие касательные напряжения, возникающие в точках, расположенных на нейтральной оси x, вычисляются по формуле:

Источник