Меню

Увеличение напряжения с помощью транзистора



Увеличение напряжения с помощью транзистора

Биполярный транзистор – полупроводниковый элемент с двумя pn переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают pnp и npn типа. На рис. 1, а и б показаны их условные обозначения.

Рис. 1. Биполярные транзисторы и их диодные эквивалентные схемы:

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p— или n— слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис. 2.

Транзисторы npn типа подчиняются следующим правилам (для транзисторов pnp типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

  1. Коллектор имеет более положительный потенциал, чем эмиттер.
  2. Цепи база-эмиттер и база-коллектор работают как диоды (рис. 1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением:
  1. Каждый транзистор характеризуется максимальными значениями IК,IБ,UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.
  2. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы.

Соотношение токов коллектора и эмиттера приблизительно равно

где α=0,95…0,99 – коэффициент передачи тока эмиттера.

Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 2, а) представляет собой базовый ток

Ток коллектора зависит от тока базы в соответствии с выражением:

где β=α/(1-α) – коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

Усиление с помощью транзистора. На рис. 3 изображена схема усилительного каскада с транзистором типа npn. Принято данную схему называть схемой с общим эмиттером, так как эмиттер является общей точкой для входа и выхода схемы.

Входное напряжение UВХ, которое нужно усилить, подается от источника колебаний на участок база – эмиттер. На базу подано также положительное смещение от источника Е1, являющееся прямым напряжением для эмиттерного перехода. При этом в цепи базы протекает некоторый ток. Цепь коллектора питается от источника Е2. Для получения усиленного выходного напряжения в эту цепь включена нагрузка RН.

Рис. 3. Схема включения транзистора в усилительный каскад (схема с общим эмиттером)

Источник

Как работает усилитель на транзисторе

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

Читайте также:  Реле напряжения вольт контроль рн 101м

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Для данной схемы нужен динамик с сопротивлением около 1 кОм.

Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

Читайте также:  При каком виде кз треугольник напряжений не изменяется

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h21э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Источник

ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг

Home Радиотехника Усилитель напряжения на биполярном транзисторе

Усилитель напряжения на биполярном транзисторе

Простые схемы усилителей напряжения на биполярном транзисторе

Рис. 1. Использование транзистора в усилителе напряжения: (а) простейшая схема, (б) схема со смешением.

Сигналами в электронных схемах обычно являются постоянные или переменные напряжения. Такие устройства, как например микрофон, создают переменное напряжение, которое должно быть усилено прежде, чем им можно будет воспользоваться. Некоторые источники сигналов, такие как фототранзистор и некоторые детекторы, могут быть источниками тока, который, как правило, еще до усиления преобразуется в напряжение.

Поэтому наиболее важны усилители напряжения и, несмотря на то, что биполярный транзистор работает как устройство, усиливающее ток, основное применение он находит в усилителях напряжения. Рассмотрим основные принципы работы усилителя напряжения на биполярном транзисторе.

Резистор нагрузки

На рис. 1.(a) показан очень простой усилитель напряжения; выходное напряжение Vout возникает на выходе в результате протекания коллекторного тока по резистору нагрузки RL. Этот пример иллюстрирует одно из наиболее важных применений резисторов в электронных цепях: преобразование тока в напряжение. Входное напряжение Vin, приложенное к переходу база-эмиттер, приводит к увеличению тока базы, зависящего от сопротивления перехода база-эмиттер. Ток базы вызывает намного больший ток коллектора Ic, создающий падение напряжения IcRL на резисторе RL. Эта разность потенциалов пропорциональна Vin, но намного больше по величине.

Важной деталью таких схем является земляная шина, называемая также землей, «нулем вольт» (0 В) или общей шиной и обозначаемая символом, показанным на рисунке. Земляная шина является общей для входного сигнала, выходного сигнала и источника постоянного напряжения, и обычно является точкой, относительно которой отсчитываются все напряжения в схеме.

Рабочая точка и смещение транзистора в схеме усилителя напряжения

Схема, приведенная на рис. 1.(a), как можно догадаться, является сильно упрощенной схемой усилителя напряжения. Она будет давать отклик только на положительное входное напряжение и, кроме того, только на напряжение, большее чем 0,5 В; последнее значение является той э.д.с., которая необходима для смещения перехода база-эмиттер в прямом направлении. Ясно, что если схема предназначена для усиления малых сигналов без искажения, переход база-эмиттер должен быть смещен в прямом направлении даже в отсутствие сигнала. Обычно напряжение переменного сигнала принимает как положительное, так и отрицательное значение, так что выходное напряжение на коллекторе должно иметь возможность двигаться вверх к напряжению источника питания (при отрицательном входном напряжении) и вниз к потенциалу земляной шины (при положительном входном напряжении). Из этого следует, что при равном нулю входном сигнале (это состояние обычно называется режимом покоя) в транзисторе должен протекать такой ток коллектора, чтобы напряжение на коллекторе находилось посредине между землей и напряжением источника питания, готовое изменяться в любом направлении в соответствии с полярностью входного сигнала.

На рис. 1.(б) показана схема, в которой достигается требуемый результат. Маломощный кремниевый транзистор, такой как ВС 107, будет очень хорошо работать с коллекторным током в режиме покоя 1 мА. В этом случае при правильном выборе рабочей (начальной) точки требуется, чтобы напряжение на коллекторе находилось посредине между 0 В и +9 В, то есть на резисторе RL должно падать 4,5 В. Таким образом, согласно закону Ома, RL = 4,5 В / 1 мА = 4500 Ом. Ближайшее номинальное значение RL равно 4,7 кОм. Для рассматриваемой схемы имеем:

где Vcc — напряжение питания.

Если мы примем для транзистора ВС 107 коэффициент усиления постоянного тока hFE равным 200, то для тока коллектора 1 мА требуется ток базы IB = 1/200 мА = 5 мкА. Сопротивление базового резистора RB, задающего ток базы, снова находится согласно закону Ома:

Напряжением база-эмиттер VBE (приблизительно равным 0,6 В) здесь пренебрегаем по сравнению с намного большим напряжением питания Vcc.

Разделительные конденсаторы С1 и С2 используются для изоляции внешних цепей от постоянных напряжений, имеющихся на базе и коллекторе в режиме покоя. Свойство конденсатора не пропускать постоянное напряжение и в то же время пропускать переменное очень ценно в электронике; оно является результатом стремления конденсатора сохранять свой заряд и поэтому разность потенциалов на его обкладках остается постоянной. Следовательно, увеличение потенциала на одной обкладке вызывает соответствующее увеличение потенциала на другой. Поданный на одну из обкладок, переменный сигнал изменяет ее потенциал много раз в секунду и, таким образом, передается с одной обкладки на другую. В то же время постоянное напряжение дает возможность конденсатору накопить заряд, соответствующий новой разности потенциалов на его обкладках, и поэтому оно не передается. Время, необходимое для установления новой разности потенциалов, зависит от постоянной времени цепи, которая должна быть больше периода передаваемого переменного напряжения самой низкой частоты. Более подробно этот вопрос обсуждается в главе 8. В рассматриваемом простом усилителе напряжения постоянные времени цепей с разделительными конденсаторами емкостью 10 мкФ обеспечивают передачу переменного напряжения без ослабления вплоть до 10 Гц.

Читайте также:  Стабилизатор напряжения для подвесных моторов

Знак плюс на рисунке у одной из обкладок конденсатора является указанием, как подключать электролитические конденсаторы, у которых изолирующий диэлектрический слой представляет собой чрезвычайно тонкую пленку окиси алюминия, полученную электролитическим осаждением. Такие конденсаторы имеют большие емкости при малых размерах и низкой цене, но должны включаться в схему с учетом полярности, за исключением конденсаторов специального типа — неполярных конденсаторов.

Стабилизация рабочей точки транзистора

Серьезный недостаток схемы на рис. 1.(б) состоит в том, что напряжение коллектора в режиме покоя целиком зависит от величины hFE транзистора, в то время как численные значения этого параметра имеют большой разброс у различных экземпляров транзисторов одного типа. Например, при типичном значении hFE для транзистора ВС 107, равном 200, изготовители указывают, что оно может изменяться в пределах от 90 до 450. Изменение hFE сдвигает рабочую точку по постоянному току. Например, если коэффициент hFE равен 100 вместо 200, то при этом потечет ток коллектора, равный 0,5 мА, а не 1 мА, и падение напряжения на RL составит только 2,35 В вместо 4,7 В. Увеличение напряжения на коллекторе в режиме покоя означает, что выходное напряжение в схеме может изменяться в сторону увеличения только на 2 В, а не на 4 В (возможно изменение выходного напряжения в сторону уменьшения до 6 В, но от этого мало пользы, когда положительные приращения ограничены).

Последствия использования транзистора с hFE = 400 еще более серьезны. В этом случае ток коллектора удвоится до 2 мА. Простое вычисление показывает, что все 9 В питания будут падать на резисторе RL. Говорят, что транзистор находится в насыщении. Практически между коллектором и эмиттером остается небольшое напряжение порядка 0,2 В. Любое дальнейшее увеличение тока базы почти ни к чему не приводит; действительно, падение напряжения на RL не может превышать Vcc Поскольку при насыщении транзистора потенциал коллектора фактически равен потенциалу земли, схема теперь не пригодна для линейного усиления: невозможны изменения выходного напряжения в сторону уменьшения.

Возвращаясь к линейному усилителю на рис. 1.(б), можно сказать, что необходимо некоторое усовершенствование схемы, чтобы повысить ее устойчивость к изменениям hFE. Даже если бы у нас была возможность отбирать транзисторы с hFE = 200, а это очень дорого при массовом выпуске схем, hFE увеличивается с ростом температуры, так что схема все равно не была бы надежной. На рис. 2. показано очень простое, но эффективное улучшение. Вместо того, чтобы подключать резистор RB непосредственно к Vcc, мы, уменьшив сопротивление вдвое, подключим его к коллектору (VCE≈Vcc/2). Теперь, благодаря этому, ток базы в режиме покоя зависит от коллекторного напряжения в режиме покоя. Даже при увеличении hFE транзистор не может попасть в насыщение: если коллекторное напряжение падает, то также падает ток базы, «придерживая» коллекторный ток. И наоборот, если hFE уменьшается, коллекторное напряжение в режиме покоя возрастает, увеличивая ток IB.

Ток базы определяется теперь соотношением

Объединяя эти равенства, получим

Если RL и RB имеют значения, указанные на рис. 2, и hFE = 100, то VCE≈6 В; если hFE = 400, то VCE≈3 В. Хотя здесь все еще положение рабочей точки меняется, это не существенно, пока для получения больших сигналов не требуется иметь возможно большие пределы изменения выходного напряжения. Схема, приведенная на рис. 2., будет работать при изменении параметров транзисторов в очень широком диапазоне и является полезным усилителем напряжения общего назначения. Принцип построения схемы с автокомпенсацией изменений hFE является просто примером отрицательной обратной связи, которая представляет собой одно из самых важных понятий в электронике.

Усилитель напряжения на транзисторе со стабилизацией рабочей точки

Усилитель напряжения со стабилизацией рабочей точки

Рис. 2. Усилитель напряжения со стабилизацией рабочей точки.

Для некоторых применений даже относительно небольшие изменения положения рабочей точки, имеющиеся в схеме на рис. 2, недопустимы. Если режим по постоянному току должен практически не зависеть от hFE можно использовать схему стабилизированного усилителя, показанную на рис. 3. Первым характерным признаком этой схемы является наличие резистора R3 в цепи эмиттера, а это означает, что потенциал эмиттера больше не равняется потенциалу земли, а немного выше его и равен IER3 где IE — ток эмиттера. Второе отличие состоит в том, что вместо единственного резистора для задания базового тока определенной величины применен делитель напряжения R1 R2 фиксирующий потенциал базы относительно земли. Ток делителя напряжения на порядок выше тока базы, так что последний слабо влияет на потенциал базы. Так как переход база — эмиттер смещен в прямом направлении, на нем падает небольшое напряжение (у кремниевого транзистора приблизительно 0,6 В), так что потенциал эмиттера ниже потенциала базы на 0,6 В.

Итак, если VB — потенциал базы относительно земли, а VE — потенциал эмиттера относительно земли, то

Стабилизированный усилитель с эмиттерным резистором

Рис. 3. Стабилизированный усилитель с эмиттерным резистором.

Следовательно, ток эмиттера IE определяется выбором величин VB и R3. При сопротивлениях резисторов R1 и R2, указанных на рис. 3., потенциал базы зафиксирован на уровне 1,6 В; поэтому потенциал эмиттера равен приблизительно 1,0 В, обеспечивая требуемый ток эмиттера 1 мА при сопротивлении эмиттерного резистора 1 кОм.

Источник