Меню

Усовершенствованный стабилизатор что это



Зачем нужен стабилизатор для смартфона: наглядное руководство

Мы выбираем удобство и технологичность вместо проверенных временем традиционных вещей. Мы повышаем функциональность и экономим время и пространство. Мы делаем вещи проще, создавая удобство себе в использовании современных гаджетов. Мы выбираем смарт-проекторы с расширенным функционалом, возможностями совмещать офис, работу и путешествия 3-в-1 вместо простых телевизоров. Мы выбираем профессиональные стедикамы и стабилизаторы, чтобы сделать съемку со смартфона или камеры интереснее, увлекательнее, а главное, легче. Продукция же, высокотехнологичная и современная, становится все более доступной для повседневного использования.

Сегодня, как вы уже поняли, мы остановим выбор нашей редакции на обзоре лучших стабилизаторах для смартфонов, расскажем об их особенностях, а также дадим полезные советы, как выбрать стедикам.

Записывать профессиональные видео на бюджетный смартфон — можно

Приобрести мобильный телефон с камерой 12 Мп, 20 Мп, 64 Мп или, наконец, 108 Мп — это безусловно круто. Однако количество мегапикселей слабо повлияют на качество, когда, например, вы находитесь в сложных погодных условиях или в движении. Всему проблемой является дрожь в кадре. Избавиться от нее вовсе или хотя бы сгладить углы позволит только хороший стабилизатор.

Современные стедикамы сглаживают наши движения во время записи видео на мобильный телефон. Большинство стабилизаторов, представленных на рынке, оснащены 3-осевым подвесом, который использует три мотора для стабилизации изображения. Даже если двигаться очень быстро, стедикам может значительно улучшить качество вашей записи.

Виды и типы стабилизаторов для смартфона

На рынке представлены стабилизаторы двух типов: специализированные и универсальные. Первые предназначены только для использования смартфонов или камер, вторые способны работать одновременно и с телефонами и камерами. Конечно же, специализированные дешевле, чем универсальные, но они также имеют множество ограничений. Например, ниже функционал и возможности съемки, отсутствие творческих режимов и зачастую более низкие технические характеристики.

Стабилизаторы также делятся на виды. Механические, где эффект стабилизации достигается за счет противовесов, встроенных в корпус, и электрические с более сложными конструктивными особенностями. Здесь речь идет о датчиках гироскопических; стабилизация в них осуществляется с помощью встроенных двигателей. Изображения, снятые с помощью электрического стедикама, как правило, более качественные.

При выборе стабилизатора для смартфона также важны ряд критериев, на которые нужно обратить внимание:

  • Внешний вид, вес. Вообще, вес — это ключевой критерий выбора стабилизатора для смартфона. Устройство должно быть легким, портативным, которое можно брать с собой куда угодно. Если раньше стедикамы представляли собой сложные и громоздкие устройства, то сегодня их средний вес около 450 граммов. Если вес в среднем превышает 600 г, тогда чаще всего речь идет о стабилизаторах для фото- и видеокамер;
  • Количество осей. Это дает бо́льшую гибкость для использования стабилизатора, дополнительное удобство и бо́льшие возможности. Двухосевые стедикамы способны вращать мобильный телефон в двух направлениях. Трехосевой — в трех, что обеспечивает лучший угол записи видео.
  • Совместимость. Подходить стабилизатор должен как внешне, то есть иметь соответствующие фиксаторы для крепления устройства к телефону, так и внутренне. Проверьте перед покупкой совместимость операционной системы смартфона с ПО стедикама.
  • Автономность. Наиважнейший аспект для электрических стабилизаторов. От емкости батареи зависит время работы без подзарядки. Современные стедикамы также позволяют заряжать смартфоны и иные сторонние устройства.
  • Функциональность. Существуют простые стабилизаторы, выполняющие функцию стабилизации изображения, но есть и модели, оснащенные дополнительным множеством режимов и функций. Например, стедикамы от DJI открывают возможности пользователям улучшить изображения с помощью режимов ActiveTrack 3.0, Pano или режима истории.
  • Программное обеспечение. Большинство стабилизаторов настраиваются и управляются с помощью приложения для мобильного телефона. С их помощью можно также редактировать снимки и видео или использовать готовые шаблоны. ПО при выборе стабилизатора должно быть интуитивно простым и понятным в управлении.
  • Комплектация. Производители современных стедикамов оснащают свои устройства множеством дополнительных аксессуаров, например, запасными аккумуляторами, сумками для переноски, треногами и штативами или кабелями для подзарядки и использования сторонних устройств.
  • Бренд. Он же показатель качества и надежности аппарата. DJI гарантирует пользователям лучшие устройства для съемки и творчества. Компания создает удобные, портативные устройства, с богатым функционалом и качественным ПО.

Практичный стабилизатор для смартфона DJI Osmo Mobile 3

Трехосевая стабилизация, богатый функционал и интеллектуальные режимы, управление жестами, а также расширенная комплектация. Osmo Mobile 3 предлагает пользователям оригинальный и современный аппарат для качественной съемки. Синхронизация с телефоном осуществляется с помощью Bluetooth, а смартфон можно установить в любом положении: вертикально или горизонтально. Многофункциональная кнопка М позволяет управлять устройством, выбирать режимы съемки, а также переключаться между передней и задней камерой или блокировать подвес в выбранном положение.

Аккумулятор обеспечивает непрерывную работу до 15 часов, имеется функция быстрой зарядки. Из режимов съемки есть ActiveTrack 3.0 для отслеживания объектов, панорамная съемка, Timelapse для интервальной съемки, Hyperlapse для замедленной съемки и режим историй с возможностью умной обработки изображений и видео, множественными шаблонами и последующей публикации в социальные сети.

Лучший стедикам от DJI — интеллектуальная новинка OM4

Абсолютная новинка от компании-производителя DJI, представленная в 2020 году, — складной портативный стедикам OM4. Впервые — магнитное крепление для мобильного телефона надежно закрепляет устройство на стедикаме. Впервые — можно вести съемку в прямом эфире и прерваться в любой момент, например, чтобы ответить на телефонный звонок. Съемка автоматически продолжится после завершения разговора. Творческие режимы ActiveTrack 3.0, три вида панорамной съемки, замедленная съемка и режим вращения кадра.

Ответы на часто задаваемые вопросы о DJI OM4 смотрите здесь.

Расширенное управление позволяет использовать OM4 в режиме фонарика для съемки под более низким углом, переключаться между портретным и альбомным видами съемки, а также в режиме ожидания для паузы в съемке. Удобный и интуитивно понятный дизайн позволяет с легкостью использовать OM4 одной рукой.

Читайте также:  Тяга заднего стабилизатора митсубиси аутлендер

Более подробный обзор на DJI OM4 смотрите здесь и прямо сейчас:

Профессиональные DJI Ronin S2 и Ronin SC2 для беззеркальных камер

Стедикамы S2 и SC2 стали еще более интересными и доступными для пользователя. Подвес моделей изготовлен из стали и алюминия, что придает стабилизаторам дополнительную легкость. При сниженном весе увеличился показатель полезной нагрузки. Для RS 2 — 4,5 кг, для RSC 2 — 3 кг. Модульный дизайн разделил стабилизатор на три части: штатив, батарея и непосредственно рукоять стабилизатора.

Порты RSA позволяют крепить сторонние элементы, в том числе крепления для съемки с рук, со штатива или с крана. Теперь с S2 и SC2 можно снимать и одновременно просматривать картинку через встроенные OLED-экраны на корпусе. Здесь же доступна информация о состоянии устройства на текущий момент.

Изюминкой новых S2 и SC2 стала новая технология стабилизации изображения “Титан”. Она сглаживает даже самые малейшие движения камеры и увеличивает момент силы.

В обеих моделях предусмотрены держатели для смартфонов. Управление Ronin S2 и SC2 также через мобильное приложение. Имеются оригинальные режимы, в том числе спортивный для быстрой съемки, Timelapse, Панорама, новые Time Tunnel и Roll 360, а также ActiveTrack 3.0 с еще более интеллектуальной системой слежения за движущимися объектами.

Вашему вниманию также предлагаем посмотреть видеообзор о том, как выбрать стабилизатор для смартфона в 2021 году.

Еще больше новостей и полезной информации вы найдете на наших страницах в социальных сетях:

Источник

Стабилизаторы напряжения: схемы, параметры, принцип работы

Содержание

Параметры стабилизаторов напряжения

Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации K ст, выходное сопротивление R вых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения K ст= [ ∆u вх/ u вх] / [ ∆u вых/ u вых]

где u вх, u вых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆u вх — изменение напряжения u вх; ∆u вых — изменение напряжения u вых, соответствующее изменению напряжения ∆u вх.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина K ст составляет единицы, а у более сложных — сотни и тысячи.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.

Выходное сопротивление стабилизатора определяется выражением R вых= | ∆u вых/ ∆i вых|

где ∆u вых— изменение постоянного напряжения на выходе стабилизатора; ∆i вых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина R вых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора η ст — это отношение мощности, отдаваемой в нагрузку Р н, к мощности, потребляемой от входного источника напряжения Р вх: η ст = Р н / Р вх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).

Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).

Из графических построений очевидно, что при значительном изменении эквивалентного напряжения u э (на ∆u э), а значит, и входного напряжения u вх, выходное напряжение изменяется на незначительную величину ∆u вых.

Абрамян Евгений Павлович Доцент кафедры электротехники СПбГПУ

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆u вх (на схеме пунктир):

K ст= ( ∆u вх/ u вх) : ( ∆u вых/ u вых) Так как обычно R н>> r д Следовательно, K ст≈ u вых / u вх· [ ( r д+ R 0) / r д]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.

Компенсационные стабилизаторы

Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).

Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.

В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.

В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.

Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).

Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление R б, включаемое последовательно с нагрузкой.

В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).

В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.

Читайте также:  Чертежи стабилизатора тяги дымохода

Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а).

Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем.

Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:

Подставляя выражение для i R2 в предыдущее уравнение, получим − u ст/ R 3· R 2= u ст – u вых. Следовательно, u вых = u ст· ( 1 + R 2/ R 3)

Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение u ст).

Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь ток нагрузки, а падение напряжения на нем равно разности между входным и выходным напряжениями стабилизатора.

В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.

Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85.

Резистор R предназначен для срабатывания защиты по току, а R 1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.

Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.

Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение напряжения на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя напряжение максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.

Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.

К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.

Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86).

Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение t вкл / t выкл, где t вкл, t выкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.

В качестве ключа S часто используют биполярный или полевой транзистор.

Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.

Ещё одно интересное видео о стабилизаторах:

Источник

Какие бывают типы стабилизаторов напряжения?

На производстве и в быту широко применяется электрическая энергия. Переменным током питают системы освещение, приводы механизмов электрических приборов, его подают на сетевой разъем электронных устройств. Сбытовые организации не всегда обеспечивают надлежащее качество электрических сетей, что проявляется, в частности, в колебаниях сетевого напряжения. Это неприятное явление характерно для:

  • дачных поселков и небольших населенных пунктов;
  • сетей автономных электростанций, не входящих в единую энергосистему.

Колебания отрицательно влияют на качество функционирования техники, снижают ее надежность. Застраховать себя от этого явления можно применением стабилизатора, который включают между сетью и нагрузкой, рисунок 1.

Типы стабилизаторов напряжения по принципу работы

Стабилизацию можно выполняться различными способами. Принципы стабилизации, использованные разработчиком, определяют типы стабилизаторов напряжения.

Релейные

Релейные стабилизаторы, часто называемые ступенчатыми, представляют собой силовой трансформатор с несколькими выходами вторичной обмотки, один из которых принимается за общий. Датчик отслеживает состояние сети, при выходе за пределы разрешенных допусков осуществляет автоматическую регулировку выходного напряжения с помощью переключения реле. При срабатывании отдельных силовых реле происходит переключение обмоток с подключением нагрузки на тот вывод, напряжение на котором минимально отличается от заданного.

Конструктивная простота релейных стабилизаторов, неплохая точность регулирования, невысокая стоимость, высокая надежность обеспечивают им высокую популярность.

  • ступенчатый характер регулирования;
  • заметные искажения формы синусоиды тока нагрузки при высоком входном напряжении из-за магнитного насыщения сердечника;
  • относительно слабая нагрузочная способность рабочих контактов реле;
  • высокий уровень акустического шума.

Электромеханические (сервоприводные)

Электромеханические или сервоприводные стабилизаторы устраняют один из основных недостатков стабилизаторов с механическими реле: обеспечение только ступенчатой регулировки выходного напряжения. Принцип их действия основан на изменении коэффициента трансформации. Оно реализовано с помощью щетки, соединенной с электродом выходных клемм. Щетку перемещает по вторичной обмотке тороидального трансформатора вспомогательный электродвигатель, рисунок 2.

Читайте также:  Стабилизатор высокой точности энергия снвт

Для электромеханических стабилизаторов характерны большой диапазон регулировки, небольшие габариты, малая стоимость.

Основные недостатки: низкое быстродействие, хорошо слышимый ночью шум работающего электродвигателя.

Инверторные (бесступенчатые, бестрансформаторные, IGBT, ШИМ)

Инверторные стабилизаторы реализуют двухступенчатую схему получения выходного напряжения. Сначала переменный входной ток преобразуют в постоянный, а затем из него вновь генерируют переменное напряжение. Автоматическое регулирование происходит на этапе формирования постоянного тока, здесь же реализованы функции ступени стабилизации.

Существует несколько вариантов каскадного преобразования, каждому из которых соответствует подкласс инверторных стабилизаторов. Наибольшее распространение получили ШИМ-устройства и стабилизаторы на IGBT-транзисторах.

Сильные стороны этого оборудования:

  • высокая скорость реакции на изменения входного напряжения, точность регулировки выходного;
  • хорошие массогабаритные характеристики (отсутствует силовой трансформатор);
  • простотой получения КПД выше 50 %;
  • возможность плавной регулировки выходного напряжения в сочетании с широкими пределами изменения выходного электрического тока, а также работы на холостом ходе;
  • эффективное подавление скачков напряжения и импульсных помех.

При применении надлежащей элементной базы инверторная техника нормально функционирует при отрицательных температурах.

Главный недостаток: плохая перегрузочная способность, в т.ч. кратковременная (не более 25 – 50% на протяжении 1 – 2 с). Последнее заставляет тщательно контролировать выходную мощность устройства при работе на реактивную нагрузку (электродвигатели различного назначения, вентиляторы и т.д.). Кроме того, следует принимать во внимание сложность электрической схемы, что увеличивает риски отказа, и высокую стоимость из-за необходимости применения силовой полупроводниковой элементной базы.

Феррорезонансные

Феррорезонансный стабилизатор — это устройство трансформаторного типа. Его характерная особенность — применение обмоток трансформатора, одетых на магнитопроводы разного поперечного сечения. Параллельно вторичной обмотке L2 подключен дополнительный конденсатор С, рисунок 3. Его емкость подобрана так, чтобы за счет резонанса обеспечивать постоянное насыщение магнитопровода вторичной обмотки. Отсюда большие изменения входного напряжения не приводят к колебаниям выходного.

Стабилизатор имеет высокую скорость отработки скачков, обладает повышенной надежностью за счет отсутствия схем переключения, обеспечивает неплохую точность стабилизации.

Отсутствие механически подвижных компонентов позволяет эксплуатировать феррорезонансные стабилизаторы при небольших отрицательных температурах.

  • меньший коэффициент мощности;
  • значительные нелинейные искажения выходного тока, которые могут привести к нарушениям функционирования ряда бытовых приборов, например, к искажениям изображения цветного телевизора и некачественному стиранию старых записей магнитофоном;
  • нестабильность функционирования при вариациях частоты входного напряжения более чем на 0,5 Гц от номинального значения, что нередко встречается при питании населенного пункта от автономной электростанции.

Электронные (симисторные, тиристорные)

Так называемые электронные стабилизаторы структурно повторяют устройства на электромагнитных реле, но для ступенчатых переключений обмоток авторансформатора использованы полупроводниковые изделия. Возможно несколько разновидностей таких электронных схем, каждая из которых осуществляет автоматическое переключение коэффициента трансформации. Серийно выпускаются стабилизаторы, в которых функции ключевых элементов ступенчатого регулирования возложены на симисторы и тиристоры.

Тиристор — это полупроводниковая структура с тремя p-n-переходами, в которой выполнена глубокая положительная обратная связь. Ее наличие обеспечивает высокую скорость переключения при работе в ключевой режиме. Симистор образован двумя тиристорами с объединенными управляющими электродами, включенными встречно-параллельно, рисунок 4. За счет возможности пропускания тока этим компонентом в двух направлениях симисторные стабилизаторы демонстрируют повышенный КПД. Это выгодно отличает их от тиристорных стабилизаторов.

  • повышенный коэффициент стабилизации;
  • прекрасное подавление перепадов напряжения, импульсных помех;
  • хорошие массогабаритные параметры;
  • высокая надежность при реализации на качественной элементной базе.

Кроме того, по быстродействию электронные стабилизаторы заметно превосходят свои релейные электромеханические аналоги, т.е. хорошо отрабатывают скачки напряжения.

  • плохо адаптированы для работы с реактивной нагрузкой;
  • высокая стоимость;
  • сложность выполнения ремонта.

Виды стабилизаторов напряжения по классу напряжения

Промышленность выпускает широкую гамму стабилизаторов.

По диапазону выходных напряжений электронное оборудование для однофазных сетей рассчитано на 220 – 240 В (популярна также промежуточная градация 230 В), доступны феррорезонансные стабилизаторы на 110 – 120 В.

Бытовое оборудование для трехфазных электросетей обеспечивает выходное напряжение 380 – 415 В вне зависимости от применяемых схемных решений и отдаваемого тока нагрузки.

Техника промышленного назначения может иметь более высокое выходное напряжение: вплоть до 6 – 10 кВ.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания.

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Источник