Меню

Ток через резистор эр 2 при напряжении питания цепи 15 вольт дельта тест



Ток через резистор эр 2 при напряжении питания цепи 15 вольт дельта тест

Расчеты напряжения и тока в RC и L/R цепях

Существует простой способ расчета любой величины реактивной цепи постоянного тока в любой момент времени. Первый шаг этого способа заключается в определении начальных и конечных значений тех величин, против изменения которых выступает конденсатор или катушка индуктивности (которые они пытаются держать на постоянном уровне, независимо от реактивной составляющей). Для конденсаторов такой величиной будет напряжение, а для катушек индуктивности — ток. Начальное значение — это такое значение, которое было до момента замыкания (размыкания) контактов выключателя, и которое реактивный компонент пытается удерживать на постоянном уровне после замыкания (размыкания) контактов. Конечное значение — это значение, которое устанавливается по истечении неопределенно длительного периода времени. Оно может быть определено путем анализа емкостной цепи, когда конденсатор выступает в качестве обрыва цепи, и индуктивной цепи, когда катушка индуктивности выступает в роли короткозамкнутой перемычки, потому что именно так ведут себя эти элементы при достижении «полной зарядки» через неопределенно длительный промежуток времени.

Следующим шагом является вычисление постоянной времени цепи. Постоянная времени представляет собой промежуток времени, в течение которого величина напряжения или тока в переходном процессе изменится примерно на 63% от начального до конечного значения. В последовательной RC- цепи , постоянная времени равна общему сопротивлению (в Омах) умноженному на общую емкость ( в Фарадах) . В последовательной L/R — цепи она равно общей индуктивности ( в Генри) деленной на общее сопротивление (в Омах) . В обоих случаях постоянная времени выражается в секундах и обозначается греческой буквой «тау» (τ):

rcrl5

Увеличение и уменьшение значений тока и напряжения в переходных процессах, как уже отмечалось ранее, носит асимптотический характер . А это значит, что они начинают быстро изменяться в начальный момент времени, и практически не изменяются в последующем. На графике данные изменения отображаются в виде экспоненциальных кривых.

Как уже было сказано выше, постоянная времени представляет собой промежуток времени, в течение которого величина напряжения или тока в переходном процессе изменится примерно на 63% от начального до конечного значения. Каждая последующая постоянная времени приближает эти величины к конечному значению еще примерно на 63%. Математическая формула для определения точного процента довольно проста:

rcrl6

Буква e здесь — иррациональная константа, равная приблизительно 2,718 281 8 . За время τ, процент изменения от начального до конечного значения составит:

rcrl7

За время 2τ, процент изменения от начального до конечного значения составит:

rcrl8

За время 10τ, процент изменения составит:

rcrl9

Для расчета напряжений и токов в реактивных цепях эту формулу можно сделать более универсальной:

rcrl11

Давайте проанализируем повышение напряжения в RC-цепи, показанной в первой статье этого раздела:

rcrl1

Обратите внимание, мы выбрали для анализа напряжение, так как именно эту величину конденсатор пытается поддерживать на постоянном уровне. Зная сопротивление резистора (10 кОм) и емкость конденсатора (100 мкФ) мы можем рассчитать постоянную времени данной цепи:

rcrl12

Так как в момент замыкания контактов выключателя напряжение на конденсаторе равно 0 вольт, то именно это значение мы и будем использовать в качестве начального. Конечным значением конечно же будет напряжение источника питания (15 Вольт). С учетом всех этих цифр наше уравнение примет следующий вид:

rcrl13

Таким образом, через 7,25 секунд (к примеру) после подачи напряжения в схему через замкнутые контакты выключателя , напряжение на конденсаторе увеличится на :

rcrl14

Из этих расчетов можно сделать следующий вывод: если начальное напряжение конденсатора составляло 0 вольт, то через 7,25 секунд после замыкания контактов выключателя оно будет равно 14,989 вольт.

При помощи этой же формулы можно рассчитать и ток через конденсатор. Поскольку разряженный конденсатор первоначально действует как короткозамкнутая перемычка, ток через него будет максимальным. Рассчитать этот ток можно поделив напряжение источника питания (15 вольт) на единственное сопротивление (10 кОм):

rcrl15

Известно также, что конечный ток будет равен нулю , так как конденсатор в конечном итоге ведет себя как разомкнутая цепь. Теперь мы можем подставить эти значения в нашу универсальную формулу для расчета величины тока через 7,25 секунд после замыкания контактов выключателя:

rcrl16

Обратите внимание, что полученное значение является отрицательным , а не положительным! Это говорит об уменьшении тока с течением времени . Так как начальное значение тока составляет 1,5 мА, то его уменьшение на 1,4989 мА за 7,25 секунд даст в конечном итоге 0,001065 мА ( 1,065 мкА ).

Это же значение можно получить при помощи закона Ома, отняв напряжение конденсатора ( 14,989 вольт) от напряжения источника питания (15 вольт) и поделив полученное значение на сопротивление (10кОм):

rcrl17

Рассмотренная выше универсальная формула хорошо подходит и для анализа L/R цепи. Давайте применим ее к цепи, рассмотренной во второй статье данного раздела:

rcrl3

При индуктивности 1 Генри и последовательном сопротивлении 1 Ом постоянная времени будет равна 1 секунде:

rcrl18

Поскольку катушка индуктивности в данной цепи выступает против изменения тока, именно эту величину мы и выберем для анализа. Начальным значением здесь выступит величина тока через катушку индуктивности в момент замыкания контактов выключателя. Она будет равна нулю. В качестве конечного значения мы возьмем величину тока, которая установится в катушке индуктивности по прошествии неопределенно длительного промежутка времени (максимальная величина). Рассчитать ее можно поделив напряжение источника питания на последовательное сопротивление: 15 В/1 Ом = 15 А.

Если мы хотим определить величину тока через 3,5 секунды после замыкания контактов выключателя, то формула примет следующий вид:

rcrl19

Учитывая тот факт, что начальный ток через катушку индуктивности равнялся нулю, через 3,5 секунды с момента замыкания контактов выключателя его величина составит 14,547 ампер.

Расчет напряжений в индуктивной цепи осуществляется при помощи закона Ома и начинается с резисторов, а заканчивается катушкой индуктивности. При наличии в нашем примере только одного резистора ( имеющего значение 1 Ом ), произвести эти расчеты довольно легко :

rcrl20

Отняв полученное значение от напряжения источника питания (15 В), мы получим напряжение, которое будет на катушке индуктивности через 3,5 секунды после замыкания контактов выключателя:

Источник

Падение напряжения на резисторе: формула расчета

Падение напряжения на резисторе

Компоненты электрической цепи

Резистор — элемент в электрической цепи, служащий для снижения напряжения на выходе. Его название происходит от лат. «resisto» – «сопротивляюсь». Из этой статьи вы узнаете, как с помощью резисторов понижается напряжение, об их характеристиках, а также о том, как произвести расчёт резистора, гасящего ток для понижения напряжения.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Читайте также:  Плазма блок питания напряжения

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Закон Ома для электрической цепи

В основе расчёта входного и выходного напряжения цепи лежит закон Ома, знакомый ещё со школы по курсу физики. Базовая формула расчёта напряжения на участке цепи выглядит так:

закон-ома

Определить напряжение в цепи переменного тока можно по следующей формуле:

в этой формуле Z означает сопротивление (Ом), которое было получено на протяжении всей цепи.

В ряде случаев показатели не могут быть рассчитаны по этим фармулам напрямую.

  1. В случаях нахождения проводников или диэлектриков под воздействием высокого напряжения.
  2. В случаях быстро изменяющихся электромагнитных полей при прохождении токов высокой частоты. В этом случае требуется учитывать также инерцию переносящих заряд частиц.
  3. В условиях возникновении свойств сверхпроводимости, если цепи работают при экстремально низких температурах.
  4. При нагреве проводника протекающим по нему током.
  5. Для светодиодов. Зависимость между током и падением напряжения в этом случае нелинейная.
  6. Для процессов в устройствах на основе полупроводников.

В зависимости от того, как элементы включены в цепь – последовательно или параллельно – общее сопротивление рассчитывают по-разному.

Параллельное и последовательное подключение

Расчёт при последовательном подключении

При последовательном соединении элементы идут друг за другом, и выход предыдущего соединяется с входом последующего. Общее сопротивление в этом случае можно посчитать по формуле:

R1…Rn – сопротивления n-элементов (Ом).

Расчёт при параллельном подключении

При параллельном соединении оба элемента цепи включаются параллельно друг другу. Сопротивление в этом случае получают через дробь, формула для его расчёта выглядит так:

R1 … Rn – сопротивления n-элементов (Ом).

Внимание! При разработке схем устройств обычно используются комбинированные соединения. Для расчёта сопротивления схема упрощается, и общее сопротивление сперва определяется для участков с параллельным соединением, а потом суммируется как для цепи с последовательными соединениями элементов.

Для упрощения и ускорения расчётов можно это сделать онлайн.

Единица измерения сопротивления резистора

В Международной системе единиц (СИ) сопротивление измеряется в омах – единице измерения, названной так в честь физика Георга Ома, который также открыл знаменитый закон для электрической цепи. Международное обозначение выглядит так: Ω. Физический смысл этой единицы заключается в следующем:

Сопротивление проводника равно 1 Ом при силе тока, равной 1 А, и напряжении на концах проводников, равном 1 В.

Оно может быть измерено с помощью прибора, называющегося омметр.

Для справки. В системе СГС сопротивление не имеет определённого названия, но в её расширениях используются статом (1 statΩ; рассчитываетсся как ток 1 статампер разделить на напряжение 1 статвольт) и абом (1 abΩ = 1*10 -9 Ом, наноом; его расчёт – ток 1 абампер разделить на напряжение величиной 1 абвольт). Размерность этой величины в СГСЭ и гауссовой системе равна TL −1 , в СГСМ — LT −1 . Обратная величина – электропроводность, её единица измерения – сименс (См), статсименс или абсименс для разных систем соотвественно.

Существует большое разнообразие резисторов с широкой линейкой стандартных величин сопротивления. Рассмотрим соотношение этих номиналов и различные приставки, использующиеся для их обозначения.

Приставка кило- (килоом):

1 КОм равен 1000 Ом

Приставка мега- (мегаом):

1 МОм соответствует 1000 КОм или 1 000 000 Ом

Часто показатели резисторов наносятся непосредственно на их корпус. Это очень удобно. Рассмотрим обозначение их номиналов более подробно.

Резисторы с маркировкой

Номинал резистора – это то же самое, что его сопротивление. Раньше резисторы были достаточно крупными, поэтому все значения прописывались целиком на их корпусах с использованием обычных букв. Помимо сопротивления на резисторе могли указать ещё и класс точности или мощность рассеивания.

Сопротивление – основная характеристика резистора. О том, что оно из себя представляет и как рассчитывается, было рассказано выше, поэтому сейчас подробнее остановимся на особенностях их обозначений.

Для простановки значения, не привышающего 1КОм после цифры, обозначающей величину сопротивления, ставится R (или величина указывается совсем без буквы). На резисторах, выпускавшихся давно, можно встретить слово Ом. Позже принятая маркировка изменилась, теперь она используется в формате:

целая величина – R – дробный остаток

300 = 300 Ом
200 R = 200 Ом

Современные обозначения выглядят так:

4R02 = 4,02 Ом
2R2 = 2,2 Ом

Если значение меньше 1 ома, то ноль в начале обозначения опускают:

Если сопротивление больше тысячи ом, то применяются специальные приставки (мега-, кило-) для упрощения написания. Очень большие значения этой величины почти не встречаются, поэтому необходимость в префиксах Тера- и Гига- возникает крайне редко. Примеры обозначений:

K200 = 200 Ом
2К0 = 2 КОм = 2000 Ом
M200 = 0,2 МОм = 200 KОм = 100 000 Ом
3М0 = 3 МОм = 3 000 КОм = 3 000 000 Ом

Дополнительно можно рассмотреть следующую характеристику – удельное сопротивление.

Бывает, что возникает необходимость также рассчитать удельное сопротивление. Оно измеряется величиной Ом*м.

Для однородного проводника вычисляемое удельное сопротивление находится так:

l — длина отрезка проводника (м),

S — площадь сечения проводникового элемента (м 2 )

Подробнее о буквенной маркировке резисторов читайте здесь.

Характеристика мощности резистора

Мощность электрического тока на участке цепи можно узнать через произведение силы тока для него и напряжения на данном участке. Формула имеет следующий вид:

P= I * U (произведение силы тока и напряжения), где

P – значение мощности (Вт).

Резистор совершает работу по снижению силы тока, при этом он выделяет тепло в окружающее пространство. Но если работа по ограничению тока очень велика и тепло вырабатывается слишком быстро, то он перегреется и может сгореть, так как не будет успевать его рассеивать. Следует учитывать этот момент, подбирая мощность резистора

Важно! Мощность резистора – это очень важный параметр, который обязательно нужно учитывать при разработке электрических схем устройств Мощность резистора характеризуется максимальной величиной силы тока, которую он может выдерживать без перегрева и не выходя из строя.

Расчет мощности резистора

Определим мощность резистора на примере схемы с включённой нагрузкой. Например, мы имеем ток, равный 0,4А, а падение напряжения на резисторе составляет 5В. Значит, расчёт будет выглядеть следующим образом:

Читайте также:  Холодильники устойчивые для перепадов напряжения

Следовательно, здесь потребуется резистор, мощность которого не ниже двух ватт. Лучше, если эта характеристика будет чуть выше, чтобы резистор не перегревался и не вышел из строя.

Как понизить напряжение с помощью резистора

Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:

Делитель напряжения

В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:

Uвх – напряжение на входе, В;

Uвых – напряжение на выходе, В

R1 – показатель сопр. 1-ого резистора (Ом)

R2 – показатель сопр. 2-ого элемента, (Ом)

Подбор резистора для понижения напряжения

Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.

EveryCircuit

Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:

  • EasyEDA;
  • Circuit Sims;
  • DcAcLab;

В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.

Источник

Резисторы, ток и напряжение

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Аналогия с гидравликой

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
— Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
— Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Аналогия с гидравликой

Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах. Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Аналогия с гидравликой

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение — это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

Параллельное соединение

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:

В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.

Последовательное соединение

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R3=R1+R2

В интернете есть удобные он-лайн калькуляторы для расчета последовательного и параллельного соединения резисторов.

Токоограничивающий резистор

Цепь с лампой

Самая основная роль токоограничивающих резисторов — это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи. Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление. Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Читайте также:  Сглаживающие фильтры выпрямленного напряжения

Эквивалентная схема

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V1-V2)/R
где (V1-V2) является разностью напряжений до и после резистора.

Добавляем токоограничивающий резистор

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для расчета токоограничительного резистора светодиода.

Резисторы как делитель напряжения

Делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R1=R2=R), то формулу можно записать так:

Делитель напряжения

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Узел

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Ветви

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V1-V2=I1*(R1)
Перенесем:
V2=V1-(I1*R1)
Где V2 является искомым напряжением, V1 является опорным напряжением, которое известно, I1 ток, протекающий от узла 1 к узлу 2 и R1 представляет собой сопротивление между 2 узлами.

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1=(V1-V2)/R1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1+ I3=I2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: «Резисторы какой мощности вы хотите?» или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
где ток измеряется в амперах (А), напряжение в вольтах (В) и Р — рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Резисторы

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

ПотенциометрПотенциометр

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.

Потенциометры

Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.

Терморезисторы
Терморезисторы

Фоторезистор
Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Делитель напряжения

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то Vout будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Схемотехническое обозначение резисторов

Схемотехническое обозначение резисторов

Про определение номинала резистора используя цветовую маркировку можно почитать здесь.

Шпакунов А. Опубликована: 2012 г. 0 2

Источник