Меню

Таймер 555 регулятор мощности



ШИМ — регуляторы оборотов двигателей на таймере 555

ШИМ - регуляторы оборотов двигателей на таймере 555Широкое применение таймер 555 находит в устройствах регулирования, например, в ШИМ — регуляторах оборотов двигателей постоянного тока.

Все, кто когда – либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ — регулятора на основе таймера 555 показан на рисунке 1.

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.

Схема ШИМ - регулятора на таймере 555

Рисунок 1. Схема ШИМ — регулятора на таймере 555

Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.

Принципиальная схема набора ШИМ - регулятора

Рисунок 2. Принципиальная схема набора ШИМ — регулятора.

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент – диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку — двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой – лампой накаливания или каким-либо нагревательным элементом.

Печатная плата набора ШИМ - регулятора

Рисунок 3. Печатная плата набора ШИМ — регулятора.

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.

Внешний вид набора ШИМ - регулятора

Рисунок 4. Внешний вид набора ШИМ — регулятора.

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового» провода. Возможный вариант подобной схемы показан на рисунке 5.

ШИМ - регулятор оборотов двигателей на таймере 555

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит» в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.

Подключение MOSFET транзистора

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Читайте также:  Как определить потребляемую мощность оборудования

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки – лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере, в интернете их полно, но проще сделать на таймере NE555.

Источник

Схема. Регулятор мощности на 555-м таймере

Автор: Radioelectronika-Ru · Опубликовано 09.10.2017 · Обновлено 20.03.2018

В предлагаемой схеме регулятора мощности коммутирующим элементом является симистор (триак). В радиолюбительской литературе авторы конструкций в основном применяют фазоимпульсное управление, когда момент открывания полупроводникового ключа (тиристора, симистора) определяется подачей напряжения на управляющий электрод, а закрывание происходит тогда, когда ток через прибор становится меньше тока удержания. В описываемой схеме регулятора мощности автор остановился именно на таком принципе управления симистором. В отличие от ранее предложенных в литературе схем управления, в предлагаемой конструкции применен более эффективный способ привязки отсчёта времени задержки включения симистора к моменту перехода сетевого напряжения через ноль и более точная выдержка этой временной задержки.

Схема регулятора мощности, о котором идет речь, показана на рис.1.
Напряжение питания схемы регулятора мощности, в виду малого потребления, ограничивается с помощью гасящего конденсатора С1. Резистор R1 необходим в первоначальный момент включения устройства в сеть, для ограничения тока через диодный мост VD1-VD4, когда конденсатор ещё не заряжен. Мост выпрямляет ток, а стабилитрон VD9 обеспечивает стабилизацию напряжения питания узла, управляющего моментом включения симистора. Конденсатор С2 необходим для сглаживания пульсаций этого напряжения.

С помощью диодного моста VD5-VD8, транзистора VT1, оптрона DA1 и сопутствующих радиокомпонентов осуществляется очень точная привязка момента перехода сетевого напряжения через ноль. Этот узел позаимствован из статьи [1]. Кратко рассмотрим его работу. Резисторы R2 и R3 гасят излишек сетевого напряжения, так как далее используются низковольтные компоненты. В статье [1 ] предлагалось использовать SMD-резисторы типоразмера 1206, но автор не решился на такой эксперимент. Далее напряжение сети преобразуется диодным мостом в полуволны, следующие с частотой 100 Гц, а стабилитрон VD10 ограничивает их по амплитуде уровнем, который необходим для работы каскада на транзисторе VT1, формируя трапецеидальные импульсы. Резистор R4 немного «подгружает» мост. При приходе каждого трапецеидального импульса конденсатор СЗ заряжается через диод VD11. Когда напряжение на срезе трапецеидального импульса становится ниже, чем напряжение на конденсаторе СЗ, открывается транзистор VT1. Конденсатор СЗ разряжается через ограничивающий резистор R5, участок Э-К VT1 и светоизлучающий диод оптрона DA1. При этом формируется импульс длительностью несколько сотен микросекунд. Импульс возникает примерно за 200 мкс до перехода сетевого напряжения через ноль. Оптрон DA1 увеличивает крутизну импульса и инвертирует его. Потребляемая этим узлом мощность не превышает 200 мВт.

Задержку включения симистора относительно перехода сетевого напряжения через ноль выполняет микросхема популярного таймера-генератора DA2 типа 555. На этой микросхеме выполнен регулируемый одновибратор, генерирующий на своем выходе импульсы высокой точности по длительности. Он запускается по входу «TRIGGER» входным отрицательным импульсом. При этом на выходе «OUTPUT» после запуска устанавливается напряжение, немного не доходящее до напряжения питания. Через вход оптрона DA3 и светодиод HL1 ток не протекает. Через резисторы R7 и R8 заряжаются конденсаторы С4-С6. Когда напряжение на них достигнет уровня 2/3 напряжения питания, по входу «THRESOLD» таймер переключится в противоположное состояние, то есть на выходе будет напряжение близкое к напряжению общей шины. На выходе «-DISCHARGE» также устанавливается низкое напряжение. Конденсаторы С4-С6 через внутренний транзистор микросхемы разряжаются на общую шину. Таким образом формируется высокостабильные по длительности импульсы. Стабильность их в основном зависит от временной и температурной стабильности применённых конденсаторов и резисторов R7 и R8. Резистор R7 позволяет изменять длительность времени задержки появления на выходе таймера низкого напряжения. В момент установления на выводе «OUTPUT» этого напряжения, через вход оптрона DA3 и светодиод HL1 начинает протекать ток. Тиристорный оптрон включается, подавая на управляющий вход G симистора VS1 открывающее напряжение. В результате чего триак коммутирует мощную нагрузку.

Читайте также:  Чери амулет как увеличить мощность

На первый взгляд может показаться, что схема регулятора мощности сложна, но более простые схемы, предлагаемые радиолюбителями, страдают одним существенным недостатком: гистерезисом регулировочной характеристики. Устранение гистерезиса схемотехническими способами приводит к их усложнению, не уступающему сложности рассмотренной выше схемы. Промышленные схемы регуляторов мощности в большинстве своем еще сложнее. Проще схемы, которые обладают высокими эксплуатационными характеристиками, только выполненные на микроконтроллерах. Для этого, правда, надо написать еще программу, а при ее наличии микроконтроллер надо запрограммировать программатором, но не у всех радиолюбителей он имеется.

Конструкция и детали. В предлагаемой схеме регулятора мощности необходимо использовать заведомо исправные радиоэлементы, в противном случае придется потратить время на поиск неисправности. В конструкции применены постоянные резисторы типа МЛТ, не менее указанной на схеме мощности, которые можно заменить аналогичными импортными. Переменный резистор типа СПЗ-4аМ. Конденсатор С1 пленочный импортный или отечественный типа К73-17. Конденсаторы СЗ-С7 импортные керамические, но конденсаторы С4-С6 лучше использовать отечественные типа К73-9 или К73-17 на напряжение 63 или 100 В. Они более габаритные, но и более стабильные. Электролитический конденсатор С2 импортный, например, фирмы HITANO. Диод VD11 можно заменить отечественным КД522Б. Диодные мосты можно заменить отдельными диодами, выдерживающими обратное напряжение не менее 400 В и прямой постоянный ток 0,3 А, например 1N4004. Светодиод может быть любого цвета свечения, как импортный типа RL50-YG213, зеленый, так и отечественный АЛ307Б. Транзистор VT1 заменяется отечественным КТ3107. Оптопарам DA1 и DA3 отечественных аналогов нет. Микросхему таймера можно заменить на КР1006ВИ1. Триак можно применить и более мощный типа ВТ139-600Е с максимальным допустимым током 16 А, всё зависит от применяемой нагрузки.

Все детали, исключая триак, размещены на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм размерами 80×110 мм. Чертеж печатной платы показан на рис.2, а размещение радиокомпонентов — на рис.3. На плате имеются отверстия для крепления радиатора. Радиатор использован от изделия «Устройство регулировки температуры РТ-3». Размеры радиатора 70×40 мм. Радиатор имеет 8 ребер высотой 20 мм. Он установлен на втулках над переменным резистором в верхней части платы. Это сделано для того, чтобы тепловой поток от него не нагревал радиоэлементы. На радиаторе через изоляционную прокладку из слюды закреплен симистор VS1. Выводы его соединены с одноименными отверстиями на плате с помощью провода МГТФ. Монтаж внутри корпуса также выполнен этим проводом. Вся конструкция (см. фото в начале статьи) установлена в корпусе от «Устройства регулировки температуры РТ-3».

Налаживание. Собранный из заведомо исправных деталей регулятор мощности, как правило, не нуждается в налаживании. Все перепайки и замены элементов необходимо производить только при извлечённой вилки сетевого шнура из розетки бытовой сети. В противном случае можно получить поражение электрическим током, так как элементы конструкции находятся под потенциалом сети. Ввиду разброса номиналов резисторов R7, R8, в некоторых случаях понадобится подбор конденсаторов С5, С6. Для этого включают в качестве нагрузки лампу накаливания. Резистором R8 изменяют напряжение на лампе и наблюдают за изменением яркости ее свечения. Если в крайнем левом положении резистора R8 происходит мерцание лампочки, то надо уменьшить ёмкость конденсаторов С5, Сб. При тщательной настройке можно добиться того, что яркость лампочки будет изменяться от полного погасания до максимальной. Если предполагается регулировать напряжение на нагревательном элементе, то добиваться такого низкого напряжения нет смысла.

В процессе эксплуатации устройства выяснилось, что оно является источником сильных радиопомех. Вследствие этого на сетевой шнур у ввода в корпус необходимо установить помехоподавляющий фильтр. Промышленность предлагает, а некоторые магазины электронных товаров имеют в наличии такие фильтры, состоящие из нескольких ферритовых колец, через отверстие внутри которых пропускается сетевой шнур.
Регулятор напряжения используется автором для регулирования мощности ТЭНов 2-конфо-рочной электроплитки «МЕЧТА». При этом отпала необходимость использовать штатные четырехпозиционные регуляторы мощности плитки.

Литература
1. Luca Matteini. Детектор перехода сетевого напряжения через ноль с минимальным количеством высоковольтных компонентов // Радиолоцман. — 2011. — №12. — С.65-67.

От редакции. Рассмотренное в статье устройство имеет ряд недостатков, о которых не упомянул автор. Его нельзя использовать для регулировки мощности устройств, содержащих электронные схемы: энергосберегающих (люминесцентных) ламп, устройств, содержащих электронные трансформаторы, светодиодных осветительных приборов со специализированными микросхемами управления и т.д. Второй из существенных недостатков — это отсутствие гальванической развязки устройства управления и сети при наличии в схеме устройства двух, так называемых, оптоизоляторов DA1 и DA3. Даже в случае качественной изоляции корпуса прибора возможен электрический пробой в потенциометре R7 между движком и осью, случайное прикосновение к которой может привести к поражению электрическим током.
Последний недостаток легко устраним. Для этого достаточно подавать на выпрямительные мосты переменное напряжение через небольшой трансформатор, а не непосредственно от сети. Это несколько усложнит схему регулятора мощности и увеличит габариты устройства, но зато обеспечит безопасность работы с ним.

Читайте также:  Мощность кабинета для дома

Источник

Простой ШИМ регулятор на NE555

С аналоговым интегральным таймером SE555/NE555 (КР1006), выпускаемым компанией Signetics Corporation с далекого 1971 года прекрасно знакомо большинство советских и зарубежных радиолюбителей. Трудно перечислить, для каких только целей не использовалась эта недорогая, но многофункциональная микросхема за почти полувековой период своего существования. Однако, даже несмотря на быстрое развитие электронной промышленности в последние годы, она по-прежнему продолжает пользоваться популярностью и выпускается в значительных объемах.
Предлагаемая Jericho Uno простенькая схемка автомобильного ШИМ-регулятора – не профессиональная, полностью отлаженная разработка, отличающаяся своей безопасностью и надежностью. Это всего лишь небольшой дешевый эксперимент, собранный на доступных бюджетных деталях и вполне удовлетворяющий минимальным требованиям. Поэтому его разработчик не берет на себя ответственности за все то, что может произойти с вашим оборудованием при эксплуатации смоделированной схемы.

Схема ШИМ регулятор на NE555

Для создания ШИМ-устройства вам понадобится:

  • электропаяльник;
  • микросхема NE555;
  • переменный резистор на 100 кОм;
  • резисторы на 47 Ом и 1 кОм по 0,5W;
  • конденсатор на 0,1 мкФ;
  • два диода 1N4148 (КД522Б).

Пошаговая сборка аналоговой схемы

Построение цепи начинаем с установки перемычек на микросхему. Используя паяльник, замыкаем между собой следующие контакты таймера: 2 и 6, 4 и 8.

Дальше, руководствуясь направлением движения электронов, распаиваем на переменном резисторе «плечи» диодного моста (проход тока в одну сторону). Номиналы диодов подобраны из имеющихся в наличие, недорогих. Можно заменить их любыми другими – это практически не повлияет на работу схемы.

Во избежание короткого замыкания и перегорания микросхемы при выкручивании переменного резистора в крайнее положение, ставим по питанию шунтирующее сопротивление в 1 кОм (контакты 7-8).

Поскольку NE555 выступает в роли генератора пилы, для получения схемы с заданной частотой, длительностью импульса и паузой, осталось подобрать резистор и конденсатор. Неслышных 18 кГц нам даст конденсатор 4,7 нФ, но такое малое значение емкости вызовет перекос плеч при работе микросхемы. Ставим оптимальную в 0,1 мкФ (контакты 1-2).

Избежать противного «пищания» схемы и подтянуть выход к высокому уровню можно чем-то низкоомным, например резистором 47-51 Ом.

Осталось подключить питание и нагрузку. Схема рассчитана на входное напряжение бортовой сети автомобиля 12V постоянного тока, но для наглядной демонстрации вполне запустится и от 9V батареи. Подключаем ее на вход микросхемы, соблюдая полярность (плюс на 8 ножку, минус на 1 ножку).

Осталось разобраться с нагрузкой. Как видно из графика, при понижении переменным резистором выходного напряжения до 6V пила на выходе (ножки 1-3) сохранилась, то есть NE555 в данной схеме и генератор пилы и компаратор одновременно. Ваш таймер работает в а-стабильном режиме и имеет коэффициент заполнения меньше 50%.

Модуль выдерживает 6-9 А проходного постоянного тока, так что при минимальных потерях можно подключить к нему как светодиодную полосу в автомобиле, так и маломощный двигатель, который и дым развеет и лицо в жару обдует. Примерно так:

Принцип работы ШИМ регулятора

Работа ШИМ регулятора достаточно проста. Таймер NE555 отслеживает напряжение на емкости С. При ее заряде до достижения максимума (полный заряд) происходит открывание внутреннего транзистора и появлению логического нуля на выходе. Далее емкость разряжается, что приводит к закрытию транзистора и приходу к выходу логической единицы. При полном разряде емкости происходит переключение системы и все повторяется. В момент заряда ток идет по одному плечу, а при разряде – по-другому. Переменным резистором мы меняем соотношение сопротивления плеч, автоматически понижая либо увеличивая напряжение на выходе. В схеме наблюдается частичное отклонение частоты, но в слышимый диапазон она не попадает.

Источник