Меню

Связь электроемкости с напряжением



ЭЛЕКТРОЕМКОСТЬ. ЕДИНИЦЫ ЭЛЕКТРОЕМКОСТИ

date image2015-03-07
views image8218

facebook icon vkontakte icon twitter icon odnoklasniki icon

Выясним важный для практики вопрос,при каком условии можно накопить на проводниках большой электрический заряд?

При любом способе заряжения тел — с помощью трения, электроста­тической машины, гальванического элемента и т. д. — первоначально нейтральные тела заряжаются вслед­ствие того, что некоторая часть за­ряженных частиц переходит от одно­го тела к другому. Обычно этими частицами являются электроны.

При заряжении двух проводни­ков, например, от электростатической машины один из них приобре­тает заряд +|q|, а другой -|q|. Между проводниками появляется электрическое поле и возникает раз­ность потенциалов (напряжение). С увеличением напряжения электрическое поле между проводниками усиливается.

В сильном электрическом поле (при большом напряжении) диэлек­трик (например, воздух) становится проводящим. Наступает так назы­ваемый пробой диэлектрика: между проводниками проскакивает искра, и они разряжаются. Чем меньше уве­личивается напряжение между проводниками с увеличением их заря­дов, тем больший заряд можно на них накопить.

Электроемкость. Введем физиче­скую величину, характеризующую способность двух проводников на­капливать электрический заряд. Эту величину называют электроем­костью.

Напряжение U между двумя про­водниками пропорционально элек­трическим зарядам, которые нахо­дятся на проводниках (на одном + |q|, а на другом — |q|). Действи­тельно, если заряды удвоить, то на­пряженность электрического поля станет в 2 раза больше, следователь­но, в 2 раза увеличится и работа, со­вершаемая полем при перемещении заряда, т. е. в 2 раза увеличится на­пряжение. Поэтому отношение заря­да q одного из проводников (на дру­гом находится такой же по модулю заряд) к разности потенциалов меж­ду этим проводником и соседним не зависит от заряда. Оно определяется геометрическими размерами провод­ников, их формой и взаимным рас­положением, а также электрически­ми свойствами окружающей среды (диэлектрической проницаемостью г). Это позволяет ввести понятие электроемкости двух проводников.

Электроемкостью двух проводни­ков называют отношение заряда одного из проводников к разности потенциалов между этим проводни­ком и соседним:

Чем меньше напряжение U при сообщении проводникам зарядов +|q|и -|q|, тем больше электро­емкость проводников. На проводни­ках можно накопить большие заря­ды, не вызывая пробоя диэлектрика. Но сама электроемкость не зави­сит ни от сообщенных проводникам зарядов, ни от возникающего напря­жения.

Иногда говорят об электроем­кости одного проводника. Это имеет смысл, если проводник является уединенным, т. е. расположен на большом по сравнению с его раз­мерами расстоянии от других про­водников. Так говорят, например, о емкости проводящего шара. При этом подразумевается, что роль дру­гого проводника играют удаленные предметы, расположенные вокруг шара.

Единицы электроемкости. Фор­мула (1) позволяет ввести едини­цу электроемкости.

Электроемкость двух проводни­ков равна единице, если при сооб­щении им зарядов +1 Кл и — 1 Кл между ними возникает разность по­тенциалов 1 В. Эту единицу назы­вают фарад (Ф); 1 Ф —1 Кл/В,

Из-за того что заряд в 1 Кл очень велик, емкость 1 Ф очень ве­лика. Поэтому на практике часто используют доли этой единицы, микрофарад (мкФ) —10 -6 Ф и пикофарад (пФ)-10 -12 Ф

Важная характеристика про­водников — электроемкость. Электро­емкость проводников тем больше, чем меньше разность потенциалов между ними при сообщении им за­рядов противоположных знаков.

Источник

Что такое электрическая ёмкость?

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость – способность проводников накапливать заряды. Понятие емкости применяется как для уединенного проводника, так и для системы, состоящей из двух и более проводников. В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяютсяаккумуляторы, используемые в качестве источников постоянного тока для питания различных устройств. Количественной характеристикой, определяющей время работы аккумулятора, является его электроемкость.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить зарядами противоположно знака и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал. Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под действием внешнего электрического поля в проводнике происходит такое распределение электронов, чтобы внутри его сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Читайте также:  Работа водителя пожарного автомобиля при тушении пожаров под напряжением допускается только

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды ионов. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными. При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды распределяются равномерно по всей поверхности. Наличие полости любой конфигурации абсолютно не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом, что он снова станет электрически нейтральным.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удалённого из зоны действия электростатического поля. Благодаря тому, что диэлектрик сохраняет полученные заряды, уединенный проводник восстановил свою нейтральность.

Распределение зарядов

Рис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому – отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействие в каждом из проводников, не позволяя им разрядиться. Величина заряда зависит от площади поверхности параллельных проводников и от свойства диэлектрика, расположенного между ними.

Свойство сохранять накопленный заряд называется электроемкостью. Точнее говоря, – это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников путем короткого замыкания их или через нагрузку. С целью увеличения емкости на практике применяют параллельные пластины или же длинные полоски тонкой фольги, разделённой диэлектриком. Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

Конденсатор

Рис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

  • переменные;
  • электролитические;
  • оксидные;
  • бумажные;
  • комбинированные и другие.

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

Электроёмкость проводника

Рис. 3. Электроёмкость проводника

По отношению к конденсатору, для определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

Ёмкость конденсатора

Ёмкость конденсатора

О других способах определения ёмкости конденсатора читайте в нашей статье: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Единицы измерения

За единицу измерения величины электроемкости принято фараду: 1 Ф = 1 Кл/1В. Поскольку фарада величина огромная, то для измерения емкости на практике она мало пригодна. Поэтому используют приставки:

  • мили (м) = 10 -3 ;
  • микро (мк) = 10 -6 ;
  • нано (н) = 10 -9 ;
  • пико (пк) = 10 -12 ;

Например, электрическая емкость 1 мкф = 0,000001 Ф. Параметр зависит от геометрических размеров, конфигурации проводника и материала диэлектрика.

Уединенный проводник и его емкость

Уединенным называют проводник, влиянием на который других элементов цепей можно пренебречь. Предполагается, что все другие проводники бесконечно удалены от него, а как известно, потенциал точки, бесконечно удаленной в пространстве, равен 0.

Электрическую емкость C уединенного проводника, определяют как количество электричества q, которое требуется для повышения электрического потенциала на 1 В: С = q/ϕ. Параметр не зависит от материала, из которого изготовлен проводник.

Конденсаторы постоянной и переменной емкости

Эра накопителей электричества началась с воздушных конденсаторов. Благодаря плоскому конденсатору с большой площадью обкладок физики смогли понять, как взаимная емкость регулируется площадями пластин, что позволило им создать конденсаторы с переменной емкостью (см. рис. 5).

Конденсатор переменной емкости

Рис. 5. Конденсатор переменной емкости

Идея изменения емкости состояла в том, чтобы путем поворота плоской обкладки изменять площадь поверхности, которая располагается напротив другой пластины. Если обкладки располагались точно друг против друга, то напряженность поля между ними была максимальной. При смещении одной из пластин на некоторый угол, напряженность уменьшалась, что приводило к изменению емкости. Таким образом, можно было плавно управлять накопительной способностью конденсатора.

Детали с переменной емкостью нашли применение в первых радиоприемниках для поиска частоты нужной станции. Данный принцип используется по сегодняшний день в различных аналоговых электрических схемах.

Читайте также:  Стабилизатор напряжения райдер rdr rd10000

Большую популярность приобрели электролитические конденсаторы. В качестве одной из обкладок у них используется электролит, обладающий высокими показателями диэлектрической проницаемости. Благодаря диэлектрическим свойствам электролитов такие конденсаторы обладают большими емкостями.

Главные их преимущества электролитического конденсатора:

  • высокие показатели емкости при малом объеме;
  • применение в цепях с постоянным током.

Недостатки:

  • необходимо соблюдать полярность;
  • ограниченный срок службы;
  • чувствительность к повышенным напряжениям.

Высокую электрическую прочность имеют плоские конденсаторы, у которых в качестве диэлектрического материала применяется керамика. Они используются в цепях с переменным током и выдерживают большие напряжения.

Сегодня промышленность поставляет на рынок множество конденсаторов различных типов, с высокими показателями проницаемости диэлектриков.

Конденсаторы различных типов

Конденсаторы различных типов

Аккумуляторы и электроемкость

Накопители электричества большой емкости (аккумуляторы) состоят из положительных и негативных пластин, погруженных в электролит. Во время зарядки часть атомов электролита распадается на ионы, которые оседают на пластине. Образуется разность потенциалов между пластинами, что является причиной возникновения ЭДС при подключении нагрузки.

С целью увеличения напряжения аккумуляторы последовательно соединяют в батареи. Разница потенциалов одной секции около 2 В. Для получения аккумулятора на 6 В необходимо создать батарею из трех секций, а на 12 В – батарею из 6 секций.

Для характеристики аккумуляторов (батарей) используются параметры:

  • емкости;
  • номинального напряжения;
  • максимального тока разряда.

Единицей емкости аккумулятора является ампер-час (А*ч) или кратные ей миллиампер-часы (мА*ч). Емкость аккумулятора зависит от площади пластин. Увеличить емкость можно путем параллельного подключения нескольких секций, но такой способ почти не применяется, так как проще и надежнее создать аккумулятор с большими пластинами.

Источник

Электроемкость. Конденсаторы и их соединение.

Электроемкостьюсистемы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

В системе СИ единица электроемкости называется фарад (Ф):

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками . Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля

Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L. Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

(Сферический и цилиндрический)

Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует

Таким образом, при параллельном соединении электроемкости складываются.

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

33.Электрическое поле в диэлектриках. Модели диэлектриков. Поляризация диэлектриков, вектор поляризации. Напряженность поля в диэлектриках.

Диэлектриками называются вещества, которые при обычных условиях практически не проводят электрический ток. Удельное электрическое сопротивление диэлектриков ρ

106 – 1015 Ом·м, тогда как у металлов ρ

Согласно представлениям классической физики, в диэлектриках в отличие от проводников, нет свободных носителей заряда – заряженных частиц, которые могли бы под действием электрического поля прийти в упорядоченное движение и образовать электрический ток проводимости.

Читайте также:  Определить действующее значение напряжения вторичной обмотки трансформатора

К диэлектрикам относятся все газы, если они не подвергались ионизации, некоторые жидкости (дистиллированная вода, бензол и др.) и твердые тела (фарфор, слюда и др.). Твердые диэлектрики подразделяют на кристаллические, аморфные и тела сложного строения, состоящие из смеси монокристаллов, соединенных аморфной прослойкой (керамика, полимеры).

Все молекулы диэлектрика электрически нейтральны: суммарный заряд всех ядер молекулы равен суммарному заряду электронов

Вектор, направленный по оси диполя от отрицательного заряда к положительному, и равный расстоянию между ними, называется плечом диполя l. Вектор, совпадающий по направлению с плечом диполя и равный произведению заряда на плечо l, называется электрическим моментом диполя или дипольным моментом.

Диэлектрики подразделяются на три основные группы.

К полярным диэлектрикам (H2O, NH3, СО и др.) относятся вещества, молекулы которых имеют асимметричное строение, т.е. центры «тяжести» положительных и отрицательных зарядов не совпадают (положительный заряд ядер, и отрицательный заряд электронов находятся в различных точках пространства). Эти молекулы обладают постоянным дипольным моментом.

К неполярным диэлектрикам относят вещества (N2, CO2, H2 и др.), молекулы которых имеют симметричное строение, т.е. центры «тяжести» положительных и отрицательных зарядов совпадают, и их дипольный момент равен нулю.

Третью группу диэлектриков составляют вещества (NaCl, KCl, KBr и др.), молекулы которых имеют ионное строение. Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков. В этих кристаллах нельзя выделить отдельную молекулу, можно рассматривать как систему двух вдвинутых одна в другую ионных подрешеток. В таких диэлектриках дипольные моменты отсутствуют.

Во внешнем электрическом поле диэлектрик поляризуется. Диэлектрик поляризован, если он имеет результирующий дипольный момент отличный от нуля, а дипольные моменты молекул ориентированы по полю. Механизм поляризации различен для различных диэлектриков.

Электроннаяполяризация возникает в диэлектриках, состоящих из неполярных молекул. Если поместить диэлектрик во внешнее электрическое поле, то положительные заряды будут смещаться по направлению вектора напряженности электрического поля , а отрицательные – в противоположном направлении. В результате неполярные молекулы приобретут наведенный (индуцированный) дипольный момент, направленный вдоль внешнего поля, т.е. диэлектрик поляризуется (рис. 2.2). Дипольный момент молекул пропорционален напряженности внешнего поля

, (2.1)

Где α – поляризуемость молекулы, зависящая только от объема молекулы.

Электронная поляризация:

а) – внешнее поле отсутствует, б) – молекула диэлектрика

во внешнем электрическом поле

Ионная поляризация возникает в диэлектриках с ионными кристаллическими решетками. При помещении диэлектрика во внешнее электрическое поле подрешетки положительных ионов смещаются по направлению напряженности электрического поля Е, а отрицательные – против поля. В результате возникают индуцированные дипольные моменты, ориентированные по полю.

В целом процессы электронной и ионной поляризации сходны между собой. Оба эти явления можно рассматривать как разновидность деформационной поляризации, представляющий собой сдвиг зарядов друг относительно друга. На деформационную поляризацию не оказывает влияния температура. Данный вид поляризации не вызывает возникновения диэлектрических потерь и отличается большой скоростью установления состояния поляризации.

Ориентационная (дипольная) поляризация возникает в полярных диэлектриках (рис. 2.3). На каждый из зарядов диполя, внесенного в однородное электрическое поле с напряженностью , будут действовать равные по модулю силы и , направленные в противоположные стороны. Они создадут момент сил М, стремящийся повернуть молекулу-диполь так, чтобы его дипольный момент совпадал по направлению с вектором напряженности электрического поля. Вектор момента сил равен или по модулю . Таким образом, каждая молекула-диполь будет испытывать ориентирующее действие поля (рис. 2.3).

Рис. 2.3. Ориентационная поляризация

Ориентационная поляризация связана с тепловым движением молекул и зависит от температуры. При повышении температуры уменьшается степень упорядоченности их ориентации.

Степень поляризации диэлектрика характеризуется векторной величиной, называемой поляризованностью, которая определяется как дипольный момент единицы объема диэлектрика.

где – суммарный дипольный момент всех молекул диэлектрика в объеме V, – дипольный момент одной молекулы.

Поляризованность изотропного диэлектрика любого типа связана с напряженностью поля соотношением

, (2.3)

где – диэлектрическая восприимчивость вещества, – электрическая постоянная.

Диэлектрическая восприимчивость вещества характеризует способность диэлектрика к поляризации.

Источник