Меню

Светодиодный модуль напряжение питания



Ликбез о питании светодиодов

Очень часто при покупке светодиода задаётся вопрос: «На сколько он вольт?» Разумеется, если речь идёт о LED-лампе, модуле, ленте, панели – законченном устройстве, уже содержащем схему управления или хотя бы просто резистор – то да, они выпускаются на стандартные напряжения. В подавляющем большинстве это 12В постоянного тока или 220 переменного. В промышленной аппаратуре встречаются и другие значения питающего напряжения, но в данной статье мы не будем касаться таких устройств, а рассмотрим, как правильно запитать дискретные светодиоды простейшими средствами – без готовых (и недешёвых) промышленных драйверов.

Прежде всего, следует помнить, что практически для всех электрических процессов в основном важно не напряжение, а ток. Физика описывает механическое действие тока, химическое действие тока, тепловое действие тока. Не напряжения, а именно тока. А какое напряжение необходимо приложить, зависит от требуемого тока и сопротивления нагрузки: U=IR (производное закона Ома).

И вот это самое R (сопротивление) зачастую непостоянно, и зависимость тока от напряжения нелинейная. Даже в обычной лампочке накаливания сопротивление нити возрастает (как и у всех металлов) с повышением температуры. Но такая нелинейность нам на руку: как бы сам собой стабилизируется ток – его увеличение ведёт к разогреву волоска, это повышает сопротивление и, следовательно, противодействует дальнейшему увеличению тока. Именно поэтому лампы накаливания можно питать фиксированным напряжением: необходимый ток установится автоматически.

Вольт-амперная характеристика светодиода

Со светодиодами – сложнее. Их вольтамперная характеристика (ВАХ), как и у всех полупроводниковых диодов, при достижении некоторого напряжения становится очень крутой, почти вертикальной, и малейшее его отклонение может вызвать значительное изменение тока. И даже при очень точном и стабильном напряжении к тем же результатам может привести тепловое смещение характеристики. Наконец, светодиоды имеют разброс параметров, и при одном и том же напряжении ток может сильно отличаться даже у приборов из одной партии.

Рабочий участок характеристики лежит в очень узком диапазоне напряжений и зависит от длины волны излучаемого света и материала светодиода: 1,5. 2,1 В для арсенида галлия (красных, оранжевых, желтых), но более 2,4 В для красных же из AlInGaP. Таблица по всем цветам и материалам обширна, а для расчетов, в общем, не нужна. С достаточной точностью можно считать напряжение светодиодов

  • красных – 2 В,
  • желтых – 2,5 В,
  • зелёных – 3 В,
  • синих и белых – 3,5 В.

В принципе так можно было бы и отвечать на вопрос из первого предложения статьи, но с оговоркой, что любое отклонение напряжения приведет либо к перегоранию светодиода, либо к тому, что он будет излучать лишь несколько процентов своего номинального светового потока.

Таким образом, светодиоды следует питать только фиксированным током (не напряжением!), а уж просто его ограничить или стабилизировать с высокой точностью – зависит от того, какое качество освещения, эффективность и долговечность излучателя необходимы.

Простейший драйвер светодиода

При использовании светодиодов для индикации или подсветки небольшой мощности, вполне допустимо погасить ток до уровня 60-70% максимально допустимого просто последовательно включенным резистором с сопротивлением:

R=(U-U VD )/I, где U – напряжение питания, U VD – рабочее напряжение светодиода (или суммарное нескольких, включенных последовательно), I – необходимый ток.

Мощность, выделяющаяся на резисторе P=I 2 R при питании маломощных светодиодов от низковольтных источников, обычно не превышает 100 мВт и позволяет использовать маленькие детали.

Простейший драйвер светодиода

Максимально допустимый ток практически всех маломощных диодов (полностью пластиковых, не имеющих площадки для радиатора) составляет 20 мА, а мощность – не более 50 мВт. Исключение – квадратные «Пираньи», которые могут содержать несколько кристаллов, включенных параллельно, или кристаллы большой площади, и рассеивать, соответственно, до 200 мВт. Это немного, но в случае близкого расположения нескольких светодиодов может вызвать ощутимый нагрев, что необходимо учитывать в конструкции – обеспечивать конвекцию воздуха, не заливать теплоизолирующими полимерами и т.д.

Из формулы видно, что тот же самый ток можно получить при различном сопротивлении – в зависимости от напряжения и количества светодиодов. Например, около 14 мА будет протекать через диод с рабочим напряжением 3 В при его питании от 12-вольтового источника через резистор 643 Ом. И такой же ток, но через 3 аналогичных диода, обеспечит резистор в 214 Ом. В первом случае существенно меньше будет изменение тока при отклонениях напряжения питания и температурном дрейфе ВАХ, зато во втором – в 9 раз меньше потери энергии на резисторе (относительно потребляемой излучателями). Палка о двух концах: экономичность против стабильности и долговечности. Практически для нормальной работы светодиодов достаточно, чтобы на резисторе падала где-то треть-четверть напряжения питания.

Параллельное включение светодиодов

Если количество светодиодов не укладывается в это условие (их суммарное напряжение превосходит или незначительно меньше напряжения источника), применяют групповое включение нескольких параллельно соединённых последовательных цепочек с резистором в каждой. Просто параллельное соединение светодиодов используется только в дешёвых китайских фонарях и не может гарантировать равномерного распределения тока между излучателями даже одной партии, не говоря уже о раздельно приобретенных компонентах.

Например, необходимо запитать 10 белых маломощных светодиодов от источника в 9 В (достаточно стабильного, не «гуляющего», как бортовая сеть автомобиля на 30-40%). В таком случае можно выбрать ток достаточно близкий к максимально допустимому. Скажем, 17 мА.

Последовательное соединение 3х3,5 В уже неприемлемо: недостаточно напряжения питания. Значит, останавливаемся на схеме из пяти цепочек по 2 диода – как раз треть питания на резисторах, сопротивлением R = (9 В-2*3,5 В)/17 мА=117 Ом. Конечно, не обязательно искать соответствующие прецизионные, вполне подойдёт ближайшее значение из стандартного ряда – 120 Ом.

Ток, потребляемый от источника, составит 5*17=85 мА, а мощность P=U*I=9 В*85 мА=765 мВт. То есть подойдёт блок питания мощностью всего 1 Вт (щелочная батарейка «Крона» прослужит около сотни часов).

Светодиодная лента

Именно так (параллельные группы только не из двух, а из трёх последовательно соединённых диодов и резистора) устроены 12-вольтовые светодиодные ленты. Поэтому резать их можно только по специально отмеченным границам – на целое количество групп.

Стабилизатор тока на транзисторе

Стабилизировать ток в маломощной цепочке проще всего полевым транзистором VT с начальным током стока, слегка превышающим рабочий ток светодиодов (КП302, КП307 и т.п.), подобрав его точное значение изменением сопротивления R в пределах нескольких десятков Ом.

Более серьёзные схемы для стабилизации тока, а также для питания светодиодов от сети 220 В рассмотрены в статье про самодельные LED-лампы. В случае же еще больших мощностей или совсем низковольтного питания (менее 3В), или для максимальной эффективности использования самых дорогих излучателей рекомендуется уже применять промышленные драйверы: себестоимость самодельного устройства такой сложности будет выше, чем у серийно выпускаемого.

Источник

Выбор источника питания для светодиодов

Запись дневника создана пользователем Лифтанутый, 31.03.12
Просмотров: 26.747, Комментариев: 27

Лифтанутый Для того, чтобы включить светодиод, можно использовать привычный источник постоянного напряжения — аккумулятор, батарейку, зарядное устройство и пр.

Для питания светодиодных светильников, также как и для других электроприборов, требуется обычная электрическая сеть, которая присутствует в любой квартире в виде розетки.
Всем известно словосочетание » 220 вольт». Нам больше информации не нужно. Если написано 220В — значит в розетку можно включать.
Для светодиодов тоже есть блоки питания на 220В. Сегодня есть самые разные конструкции светодиодов, которым нужно разное питание. Например светодиодные ленты и модули требуют напряжение постоянного тока 12В или 24В, значит источником может служить любой блок питания, который переменное 220В преобразует в постоянное напряжение 12В. ( как в автомобиле). Такие устройства мы часто встречаем в быту. Они питают разные гаджеты, их еще называют сетевыми адаптерами. адаптеры.jpg
Можно использовать БП от компьютера, предварительно упаковав его в изолированный корпус.

Читайте также:  Что такое електро напряжение ток

Но мощные растительные светодиоды правильнее и удобнее питать специальными источниками но не напряжения , а источниками тока -драйверами. Название это придуманно маркетологами, это полезно, оно позволяет отличить их от простого блока питания. Внешне их можно отличить от блоков питания только по маркировке (!)
Запомните: драйвер — источник стабильного постоянного тока. (именно тока , а не напряжения!)

Ток светодиода — его важнейший параметр и его нужно обязательно соблюдать. Наши одноваттные светодиоды обычно имеют в паспорте указание о номинальном токе 350мА, 700мА и т.д. Это не значит, что он не может работать при других токах — может. Но если ему дать ток выше номинального -он будет светить намного ярче, но из-за перегрева его срок службы сократится. Планируется появление более мощных светодиодов, у которых номинальный рабочий ток будет другим, намного больше.
Поэтому не надо превышать номинальный ток, а правильнее даже чуть занизить его до 320мА. Это обеспечит сохранение ресурса длительное время 50000часов, за счет неперегрева кристалла.
Простейший драйвер – это резистор, который включается последовательно со светодиодом , ограничивает ток и «гасит» избыток напряжения, преобразуя проходящий ток в тепло. Однако неэкономично!
Мощные светодиоды так подключать можно, но очень неудобно – нужны мощные резисторы. Для них нужно свое место крепления и пр. Если нужна головная боль — используйте резисторы и обычные источники стабилизированного напряжения.
Исправный драйвер ни при каких условиях не выдаст больше тока, чем нужно — как бы вы не подключали диоды .

Но драйверов уже стало много, они похожи на электронные трансформаторы для галогенок и продавцы не всегда компетентны — поэтому надо внимательно смотреть его этикетку- шильдик. Там должны быть указаны параметры входного напряжения и выходного.
Рассмотрим такие этикетки-шильдики.

На фото два драйвера во влагозащищенных корпусах. (Бывают вообще без корпуса — не берите, если не имеете достаточного опыта). Оба драйвера обеспечивают ток 320мА. Оба работают от сети 220 В ( 100-240V). Верхний драйвер позволяет подключить 30- 40штук одноваттных светодиодов, а нижний от 5 до 12шт. Информация о пределах выходного напряжения драйвера является самой важной, она показывает сколько светодиодов можно подключить в цепь ( это суммарное падение напряжения для всей цепи)
[​IMG]
Для чего это нам? Эта информация нужна для предварительной проверки возможности драйвера запитать определенное количество светодиодов с учетом цвета кристалла. Падение напряжения на светодиоде зависит от типа кристалла. Напомню, что для красных -это 1,8-2,1Вольта, а для синих, зеленых и белых — это 3-3,5Вольта.

Например, мы хотим засветить 5 красных светодиода. Если соединим их в цепь — получим суммарное напряжение на концах цепи 5 х 2 = 10Вольт. На нижнем драйвере написано 5-12 штук, а напряжение минимум 15Вольт. Нельзя недогружать драйвер! Маловато 5 штук, еще надо хотя бы 3штуки (8штХ 2В= 16В). Если бы это были синие 5шт, то напряжение цепи5х3 = 15В — подходит.

Именно потому, что светильник состоит из разных по цвету светодиодов — нужно сначала подсчитать суммарное падение напряжения на всей цепи и только тогда выбирать драйвер. Напряжение нашей светодиодной цепи должно быть в пределах выходного напряжения, указанного на этикетке драйвера. Если вы не попадаете в указанные пределы — тогда придется добавить лишние или убавить рассчитанное ранее количество светодиодов. Это в случае, когда нельзя подыскать другой драйвер.

Из практики: если вы правильно все посчитали, а светильник «моргает» светодиодами — значит ему нехватает нагрузки. Придется добавить светик- другой. Я добавляю зеленые — они здорово улучшают восприятие глазом, хотя растениям от этого немного пользы.

Никогда не загружайте драйвер до верхнего предела мощности- это ведет к его перегреву и снижению надежности, ведь внешняя среда непредсказуема. Вдруг жарко станет на кухне от предпраздничной жарки — варки и он перегреется. капут, однако может быть.
Если вам попадется драйвер на больший ток, например 700мА- его можно использовать для светиков на 350мА, но тогда придется сделать две параллельные светодиодные цепи, либо отдельные светики включать попарно. При этом возможны неприятности — если один светодиод сгорит ( не было ни разу), то вторая цепь окажется под удвоенным током, но будет продолжать работать с увеличенной яркостью пока вы не вмешаетесь:

Будьте внимательны — есть драйверы, подключаемые к источникам низкого напряжения 12V, 24V — это указано в этикетке. А выходные напряжения у них могут быть такими же, как и у сетевых.

Дополнение. Кроме одноватных есть и другие светодиоды: 3,5,10 ватт и далее. На драйвере указаны пределы суммарной мощности. Например, верхний драйвер (30-40вТ) может запитать или 30шт одноваттных или 10шт трехваттных и т.п. Главное не уйти за пределы этих параметров.
примечание светодиодные драйвера можно включать параллельно на одну
нагрузку. Это дает возможность быстро увеличивать мощность светового потока
светодиодного светильника за счет увеличения — уменьшения силы тока. (В разумных пределах, конечно.)

Например рассада стала тянуться — увеличиваем ток вдвое через синие
светодиоды. При номинальном токе 350мА (если теплоотвод хороший) , это возможно однако
это уже снижает ресурс долговечности.

Можно для этой цели использовать дополнительный светильник, который
питается дополнительным драйвером только на время интенсивного торможения
рассады томатов.

ПРЕДУПРЕЖДЕНИЯ:

1. включение -выключение драйвера( ов) должно быть только в сетевом проводе
(220В), а не на выходе к светодиодам.
Нельзя коммутировать вторичную цепь драйвера-могут выйти из строя светодиоды.

2. Не забудьте заранее увеличить площадь теплоотвода для светодиодов, при
использовании дополнительного тока. И хорошо «утеплите»
Номенклатура доступных драйверов непрерывно расширяется. Многие
российские заводы начали поставлять «свои» драйвера собранные из китайских
полуфабрикатов — это конечно радует. Но при этом стали попадаться
драйвера по привлекательной цене, в характеристиках которых не указаны очень
важные для электробезопасности сведения. Нам с вами не обязательно знать
электрическую схему драйвера, но степень защиты от поражения электрическим
током зависит именно от нее. Об этом подробнее.

Читайте также:  Несимметричное напряжение трехфазной сети

Если в схеме есть трансформатор ( у него две обмотки и более) — то
он гальванически отделяет сеть от светодиодов (нет электрической связи между
проводами 220В и проводами для подключения светодиодов!).
А если вместо трансформатора ( для экономии), стоит дроссель с двумя
обмотками, то никакого гальванического разделения входной и выходной цепей
не будет! На самом деле, для профессионалов, ничего страшного в этом нет.
Такие драйвера можно использовать для светильников, висящих на недоступной
высоте. В таких конструкциях предусматривают невозможность связи
светодиодов с корпусом и есть надежное заземление!

Но использовать такие драйвера для самодельных светильников досветки растений ОПАСНО для
ЖИЗНИ. потому что фазный провод может быть гальванически связан с
металлическим каркасом светильника. И рядом вода, жена и дети!
Поэтому, приобретая драйвера, обязательно интересуйтесь наличием гальванической развязки.

Источник

Блок питания как «слабое звено» светодиодного светильника

При описании технических характеристик светодиодных светильников в рекламных материалах обычно особый упор делается на типы используемых в них светодиодов. Тем не менее, надежность современных светильников определяется уже не только и не столько светодиодами, сколько блоком питания. Но некоторые важные параметры данного узла не сообщаются производителями даже по запросу. Поэтому задача выбора осветительных приборов с качественными блоками питания является весьма сложной, тем не менее, она решаема.

Причины, по которым производители при продвижении светильников на рынок делают упор именно на параметры светодиодов, имеют исторические корни. Предыдущие источники света имели срок службы, значительно меньший, чем у пускорегулирующей аппаратуры (ПРА). В итоге сложилось представление, что источник света — наименее долгоживущая часть устройства.

Светодиоды отличаются прежде всего большим сроком службы — в среднем около 50000 часов. Если светильник работает по 10 часов в сутки, то его срок службы, обусловленный параметрами светодиодов, составит более 13,5 лет. Этот промежуток времени уже сопоставим со сроком службы других узлов светильника или даже превышает его.

Особенности терминологии

Проблема выбора начинается с весьма запутанной терминологии.

Блоком питания (БП) принято называть источник питания для радиоэлектронной аппаратуры, преобразующий электрическую энергию от сети для согласования ее параметров с входными параметрами отдельных узлов аппаратуры.

Подавляющее большинство светодиодов питаются от постоянного тока и имеют напряжение питания менее 4 В. Если соединить светодиоды последовательно, то такая цепочка будет иметь большее напряжение питания. По ряду причин соединение светодиодов в цепочки длиной более 15 штук практикуется очень редко. То есть напряжение питания массива светодиодов в осветительном приборе обычно не превышает 60 В. В то же время, сети электропитания, в зависимости от страны, дают напряжение 100 – 240 В переменного тока. Для согласования параметров питания светодиодов и параметров сети электропитания обязательно требуется блок питания.

Следует отметить, что термин «блок питания» является устоявшимся понятием, широко используемым в инженерной практике. Тем не менее, он не закреплен официально ГОСТ Р 52907-2008, в котором присутствует только определение источника питания. В прежнем варианте ГОСТ официально также было закреплено понятие «вторичный источник питания», которое в ГОСТ Р 52907-2008 отсутствует. Использование термина «блок питания» позволяет дистанцироваться от автономных источников питания, т.е. гальванических элементов и аккумуляторов.

\Кроме этого, для обозначения БП часто жаргонно используется термин «драйвер». На самом деле, драйвер — это устройство, которое стабилизирует ток, питающий светодиоды. Также некоторые драйверы способны регулировать световой поток у светодиодов, т.е. диммировать их. Но драйвер не выполняет функций преобразования питающего напряжения и выпрямления тока. Поэтому узел, отвечающий за питание светодиодов в светильниках на напряжение 12 или 24 В — это драйвер. Но при питании от сети 220 В речь идет именно о БП. Тем не менее, на некоторых БП можно встретить слово driver, означающее в данном контексте стабилизацию выходного тока.


Диммируемый БП Helvar со стабилизацией выходного тока

В светотехнике устройства, осуществляющие согласование параметров питания источников света и электросети, исторически назывались балластами или ПРА. Специалисты по светотехнике при переходе на светодиоды не стали отказываться от привычного для них терминов и стали использовать их применительно к БП для светодиодов.

Еще одним термином, которым не всегда правильно обозначают блоки питания в светодиодных светильниках, является «электронный трансформатор». Данное устройство, на самом деле, только преобразует напряжение в более низкое и повышает частоту переменного тока с 50 (или 60, в зависимости от стандарта электросети, принятого в стране) до нескольких единиц или десятков килогерц. Питание светодиодов напрямую от электронного трансформатора применяется только в гирляндах и другой аналогичной декоративной светотехнической продукции.

Терминология для светодиодных светильников в части устройств электропитания пока не закреплена ГОСТ, в проектах стандартов используется термин «электронное управляющее устройство».

Справедливости ради следует заметить, что путаница с терминологией распространена и за рубежом. Термин power supply unit (блок питания) или просто power supply (источник питания) в светотехнике используется крайне редко. В рекламных материалах часто встречается обозначение блока питания как driver (драйвер), а вообще, широко распространено использование обозначение БП в светодиодных светильниках как ballast (балласт).

Классификация БП

По месту размещения БП делятся на внутренние (размещаются внутри корпуса светильника) и внешние (размещаются вне корпуса). При этом внешние БП могут идти в комплекте со светильником или приобретаться отдельно.

По своей конструкции БП можно разделить на две большие категории — изолированные и неизолированные. Особенностью изолированного БП является то, что его выход не имеет гальванической связи с входом. Благодаря этому достигается более высокий уровень электрической безопасности устройства. Электрический потенциал на выходе исправного БП изолированного типа ни при каких условиях не достигнет опасной величины. В принципе, БП изолированного типа — это и есть та самая классическая конструкция БП на основе трансформатора, используемая на протяжении многих десятилетий. К сети через преобразователь подключена первичная обмотка трансформатора, нагрузка через выпрямитель присоединяется ко вторичной обмотке. Отличия от классического варианта в том, что трансформатор работает не на частоте сети, а на более высокой частоте, а также в наличии гальванически развязанной обратной связи для стабилизации напряжения или тока. Изолированные БП стоят относительно дорого, но они хорошо справляются с бросками напряжения и импульсными помехами, которые есть в российских электрических сетях.


Пример принципиальной схемы изолированного БП. Источник: «Макро групп»

Неизолированные БП имеют гальваническую связь с выходом. Поэтому, хотя разница потенциалов между линиями на выходе такого БП представляет собой безопасную величину, не превышающую для светодиодных светильников значение 60 В постоянного тока, тем не менее, потенциал между одной из линий на выходе и землей может быть сопоставим с сетевым напряжением, т.е. принимать опасное значение. Преимуществами неизолированных БП являются компактность, низкая цена и немного больший КПД, чем у неизолированных БП. Поэтому неизолированные БП так любят производители очень дешевых светильников — помимо низкой стоимости БП, более высокий КПД позволяет использовать светодиоды с меньшей светоотдачей. Неизолированные БП также широко применяются в светодиодных лампах-ретрофитах, но здесь в ряде случаев без них обойтись нельзя из-за малых размеров.По причине низкой электробезопасности, неизолированные БП могут быть только внутренними. Недостатком неизолированных БП является проникновение на выход мощных импульсных помех, которые «гуляют» по сети. К тому же, при установке выключателя в разрыв нулевого провода (что бывает, когда светодиодные светильники устанавливают взамен существовавшего ранее освещения) светодиоды в светильнике, оснащенном таким БП, слабо светятся в выключенном состоянии. Все это приводит к преждевременному выходу светодиодов из строя.

Читайте также:  Синхронный двигатель при изменении напряжения сети


Пример принципиальной схемы неизолированного БП типа PFC. Источник: «Макро групп»

Усовершенствованные неизолированные БП нередко жаргонно называют PFC от слов Power Factor Correction — корректировка коэффициента мощности. Они обладают большим значением коэффициента мощности по сравнению с обычными неизолированными БП — около 0,9 против 0,6. В таких БП частично решены проблемы, вызывающие преждевременный выход светодиодов из строя. Тем не менее, все равно, они проигрывают изолированным БП по части устойчивости к броскам напряжения.

Почему «слабое звено»?

Электронные компоненты БП работают под напряжением до 242 В переменного тока. При авариях на сетях электропитания напряжение может кратковременно возрастать до 456 В переменного тока. Удары молнии, коммутация мощного электрооборудования и некоторые другие факторы приводят к возникновению импульсных помех с амплитудой до 4000 В. Поэтому к качеству электронных компонентов БП предъявляются особые требования.

Срок службы светодиодов зависит от того, сколько времени они светили. В отличие от этого, срок службы БП связан не только со временем работы, но и со временем хранения. То есть, если вы не включали светильник, а только его хранили на складе, то через некоторое время его БП все равно выйдет из строя. Это связано с особенностями электролитических конденсаторов, используемых в БП — они постепенно деградируют из-за испарения электролита. В среднем электролитический конденсатор можно использовать на протяжении не более 10 лет с момента выпуска. В неправильно спроектированном БП электролитический конденсатор перегревается, что сокращает его срок службы. В некоторых современных дорогостоящих БП проблема решена полной заменой электролитических конденсаторов на керамические, которые являются практически «вечными» электронными компонентами.

Читаем между строк

Производители светодиодных светильников практически всегда публикуют информацию об используемых светодиодах, но редко когда раскрывают данные о БП. Тем не менее, можно составить свое представление о том, качественный или нет блок питания, по параметрам светильников, которые производитель открыто публикует.

В первую очередь, это коэффициент мощности λ (иногда его обозначают как cos φ, что для светодиодных светильников не совсем правильно). Чем больше этот параметр, тем лучше. Для качественного блока питания он должен быть не менее 0,85. Упрощенные БП, имеющие низкую надежность, обычно выдают себя низким значением λ.

БП от ведущих производителей характерно высокое значение коэффициента мощности, примером тому является данное устройство от Osram

Производители светильников, конечно, знают, что именно БП, а не светодиоды, ограничивает срок службы осветительного прибора. Поэтому, хотя и указывают «срок службы светодиодов 50000 ч», тем не менее, гарантийный срок устанавливают, исходя из цифр по всему светильнику. Обычно исходят из того, сколько лет проработает светильник, будучи включенным круглосуточно. Например, гарантийный срок на светодиодные светильники средней ценовой категории обычно составляет 3 года. Умножаем этот срок на 8760 ч в году, и получаем 26280 ч — именно столько гарантированно будет работать светильник. Обратите внимание, что этот показатель очень близок к сроку службы типичного БП средней ценовой категории — 30000 ч.

Но, самое главное — где расположен блок питания и как он выглядит. Если он внешний и подключается к светильнику через разъем, то однозначно является изолированным (на прямое нарушение правил электробезопасности производители обычно не идут). В том случае, если БП внутренний, но выполнен в виде отдельного унифицированного модуля от одного из ведущих производителей БП, то, скорее всего, тоже изолированный. Неизолированные БП обычно выполнены как неотъемлемая часть конструкции светильника.

Производители БП

Теоретически оптимальным выбором является БП, специально разработанный для определенной модели светильника. На практике это могут удачно реализовать либо компании, имеющие, помимо светотехнического, еще и мощный бизнес по производству электронных устройств (LG, Philips), либо светотехнические компании, чьи БП хорошо зарекомендовали себя на рынке (Osram).

В остальных случаях предпочтительным вариантом является использование в светильнике БП от ведущих фирм, специализирующихся на данном виде продукции (Meanwell, Helvar, Vossloh-Schwabe и некоторые другие). Использование унифицированного БП легко заменяемой конструкции важно еще и для возможного ремонта светильника, так как БП обычно выходит из строя быстрее, чем светодиоды.

Внешние блоки питания, не входящие в комплект поставки

На рынке встречаются светодиодные светильники, имеющие низкое напряжение питания (обычно 12 или 24 В). Они предназначены для питания от источника со стабилизированным выходным напряжением или от электронного трансформатора. Нередко БП в комплект поставки таких светильников не входит, что позволяет сэкономить средства, установив один БП на несколько светильников. Если светильник допускает питание как от переменного, так и от постоянного тока, то лучше использовать постоянный ток, т.е. устанавливать БП, а не электронный трансформатор.

Выбирая внешний БП, следует иметь в виду, что максимальный КПД достигается в том случае, если нагрузка равна приблизительно 80% от номинального значения. Соответственно, умножив мощность подключенных к БП светильников на коэффициент 1,25, мы получим оптимальное значение номинальной мощности БП. Иногда мощность БП выбирают «на вырост» с учетом, что к нему позже дополнительно подключат светильники. Тогда суммарная мощность светильников «первой очереди» подключения должна быть в 1,2 раза больше минимальной мощности нагрузки БП, иначе будет срабатывать защита от холостого хода.

Применение внешнего блока питания, не входящего в комплект поставки, дает возможность повысить надежность системы, так как в светильники встроены только драйверы. Электронные компоненты в них работают при низких напряжениях, так что их качество не так критично. А модель БП пользователь выбирает самостоятельно, исходя из своих потребностей, и может запросить на него всю необходимую информацию у поставщика.

Источник