Меню

Стабилизаторы с ограничением тока регулируемые



Регулируемые стабилизаторы напряжения и тока LM317 (КР142ЕН12) и LM337
(КР142ЕН18) для источников и блоков питания.

Характеристики, особенности применения, схемы включения, онлайн калькуля- торы. Однополярные и двуполярные блоки питания на ИМС LM317 и LM337.

Среди микросхем регулируемых стабилизаторов напряжения и тока одними из самых популярных являются ИМС LM317 и LM337. Благодаря своим приличным характеристикам, низкой стоимости и удобного для монтажа исполнения, эти микросхемы при минимальном наборе внешних деталей отлично справляются с функцией несложных регулируемых источников и блоков питания для бытовой и промышленной электронной аппаратуры.
Микросхемы идентичны по своим параметрам, разница заключается лишь в том, что LM317 является регулируемым стабилизатором положительного относительно земли напряжения, а микросхема LM337 — регулируемым стабилизатором отрицательного напряжения.

Аналогами стабилизатора LM317 на отечественном рынке является модификация КР142ЕН12, а LM337 — КР142ЕН18.

Если полутора ампер выходного тока покажется недостаточно, то LM317 можно заменить на LM350 с выходным током 3 ампера и LM338 — 5А. Схемы включения останутся точно такими же.

Для удобства описание поведём для более распространённого стабилизатора блока питания с положительной полярностью напряжения (LM317), но всё сказанное и нарисованное на схемах будет так же верно для стабилизаторов с минусовой полярностью (LM317). Однако важно заметить, что при смене полярности стабилизатора — необходимо также изменить на схемах: полярность включения всех диодов, электролитических конденсаторов, а также тип проводимости внешних транзисторов (в случае их наличия). И не стоит забывать, что цоколёвки у этих микросхем разные!

Начнём с главного:
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТАБИЛИЗАТОРОВ LM317, LM337 в корпусе TO-220:

Максимальное входное напряжение блока питания — 40 В;
Регулирование выходного напряжения — от 1,25 до 37 В;
Точность установки и поддержания выходного напряжения — 0,1%;
Максимальный ток нагрузки — 1,5 A;
Минимальный ток нагрузки — 3,5. 10 мА;
Наличие защиты от возможного короткого замыкания и перегрева;

Давайте не будем сильно отвлекаться на разнообразные любительские реализации стабилизаторов на LM317 и LM337, а сделаем основной упор на рекомендациях и схемах, приведённых в datasheet-ах на микросхемы. Типовая схема включения LM317 с функцией регулировки напряжения приведена на Рис.1

Рис.1 Типовая схема включения LM317

Диоды D1 и D2 предназначены для защиты микросхемы, а конкретно — быстрого и безопасного разряда конденсаторов в случае возникновения короткого замыкания (D1 — по входу, D2 — по выходу). При выходных напряжениях менее 25 В производитель ИМС допускает работу стабилизатора без использования защитных диодов.
Конденсатор С2 снижает уровень пульсаций на выходе микросхемы на 15 дБ. Увеличение номинала этого конденсатора свыше 10 МкФ не только не приведёт к существенному снижению пульсаций, но и окажет вредное влияние на скорость реакции стабилизатора на изменение выходного напряжения.

Номинал резистора R1 жёстко определяется в техническом паспорте как 240 Ом, хотя ничего плохого не случится, если выбрать его значение в диапазоне 200. 270 Ом.
Величина R2 вычисляется исходя из формулы Vout = Vref x (1+R2/R1) + Iadj x R2 , где
Vref ≈ 1,25В , а Iadj ≈ 50 мкА .

Онлайн калькулятор для расчёта стабилизатора напряжения на основе LM317 (LM337).
Выходное напряжение не может принимать значений ниже 1,25 В.

На Рис.2 изображена схема интегрального стабилизатора напряжения с функцией плавного пуска питания, собранная на всё том же регуляторе напряжения LM317 и тоже взятая из datasheet-а на микросхему.

Рис.2 Схема стабилизатора напряжения с функцией плавного пуска питания

В начальный момент включения источника питания конденсатор C1 разряжен и представляет собой КЗ. Напряжение на эмиттере транзистора близко к нулю, соответственно напряжение на выходе микросхемы минимально и составляет величину — около 1,2 В. По мере заряда конденсатора напряжение на эмиттере растёт, напряжение на выходе микросхемы — тоже. В какой-то момент напряжение на базе достигнет значения, при котором транзистор полностью закроется, и на выходе стабилизатора установится уровень напряжения, определяемый номиналами резисторов R1, R2.
При установке защитных диодов (как это сделано на Рис.1) ничто не мешает использовать эту схему и с более высокими выходными напряжениями.

Если возникла необходимость ввести в блок питания стабилизатор (ограничитель) тока нагрузки, то для этой цели также подойдёт ИМС LM317, причём схема получается ещё проще, чем в случае использования её в качестве стабилизатора напряжения.

Рис.3 Ограничитель тока на LM317

Такое устройство может быть полезно для зарядки аккумуляторов, питания светодиодов, ограничения тока нагрузки источника питания и т. д.
При выборе номинала сопротивления R1 в диапазоне 0,8. 125 Ом ограничение выходного тока будет происходить на уровнях: от 10 мА до 1,56 А, а формула, для расчёта конкретного значения тока выглядит следующим образом: I = Iadj + Vref/R1 ≈ 1,25/R1 .

Онлайн калькулятор для расчёта стабилизатора тока на основе LM317 (LM337).

Если необходимо поиметь в хозяйстве источник, как с регулировкой выходного напряжения, так и с ограничением выходного тока, то существует возможность использовать два варианта:
1. Соединить последовательно стабилизатор тока (Рис.3) и стабилизатор напряжения (Рис.1), либо
2. Либо использовать ещё одну схему из datasheet-а.

Рис.4 Схема стабилизатора с ограничением выходного тока

Область применения схемы, приведённой на Рис.4, декларируется производителем — как зарядное устройство для 6-вольтовых аккумуляторов, но её вполне можно расширить, подключив к выходу любую нагрузку и используя обвес, взятый с типовой схемы включения (Рис.1).
Ток ограничения (стабилизации) устройства рассчитывается исходя из формулы: I ≈ 0,6//R1 , А учитывая дополнительное падение напряжения на резисторе R1, при расчёте выходного напряжения в калькуляторе — следует вводить величину Uвых, на 0,6 В превышающую необходимое значение.

Читайте также:  Стойки стабилизатора impreza замена

Умощнение LM317 внешним транзистором

Теперь что касается умощнения микросхем. Здесь datasheet также предполагает 2 варианта:
1. Параллельное соединение микросхем, но не примитивное (как порой можно встретить на некоторых интернет просторах), а довольно сложное, посредством ОУ и дополнительного транзистора. Эту схему я не вижу особого смысла рассматривать ввиду того, что подобную задачу можно решить более гуманными методами.
2. Умощнение внешним транзистором (Рис.5):

Рис.5 Умощнение стабилизатора напряжения на LM317 внешним транзистором

Силовой умощняющий транзистор следует выбирать исходя из максимального тока нагрузки и максимальной мощности, рассеиваемой на нём.
До того момента, когда падение напряжения на резисторе R1 достигнет уровня 0,6. 0,7 В транзистор закрыт, и весь ток в нагрузку течёт через микросхему стабилизатора. При достижении указанного уровня падения напряжения транзистор приоткрывается и также начинает отдавать ток в нагрузку, разгружая тем самым микросхему. Чем больше ток — тем сильнее открыт транзистор, тем большее относительное значение тока через него протекает в нагрузку.
Главный вопрос, возникающий у радиолюбителя — какого номинала следует выбирать резистор.
Для начала надо задаться некой величиной тока, протекающего через ИМС стабилизатора Ireg , не слишком большой (чтобы микросхема не сильно грелась), но и не слишком малой (для сохранения её стабильной и устойчивой работы). Обычно величина это тока выбирается в пределах 0,1. 0,3 А.
Определившись с этим значением, следует выбрать транзистор, исходя из максимального тока нагрузки, с параметром β > 1.1 x Iнмакс / Ireg . Будет лучше, если запас усиления транзистора составит величину — 10. 20%.
Тогда значение R1 можно будет вычислить по следующей формуле:
R1 ≈ (β x Vбэ) / (Ireg x β — Iнмакс) , где Vбэ ≈ 0,7В для простых транзисторов и 1,4В — для составных.

Умощнение LM317 внешним транзистором

Таким же способом можно умощнить и стабилизатор (ограничитель) тока нагрузки (Рис.6).

Рис.6 Умощнение стабилизатора тока на LM317 внешним транзистором

И под занавес приведу схему двуполярного источника питания с регулируемым напряжением (± 1,2. 35 В), опубликованную в одном из зарубежных источников (Рис.7).

Рис.7 Схема двуполярного блока питания

Для повышения надёжности устройства в него следует добавить пару защитных диодов по аналогии со схемой, изображённой на Рис.1.

Источник

Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока

Схема

Устройство разрабатывалось для выходного напряжения 1. 12V и регулирования выходного тока в пределах 0,15. 3А. Конечно для хороших результатов поставил транзисторы с усилением более 500 (сняты с платы МЦ-31 телевизора 3усцт), а составной регулирующий – около 10 000 (если измеритель не врёт – взял из модуля СКР телевизора 2усцт, коррекция растра).
Важно наверно, что питал схему от автомобильного аккумулятора, когда снимал данные.
Далее поставил трансформатор и некоторые чудеса, типа 3А при 12V, стали невозможными. Падало напряжение на выходе выпрямителя. Кому ещё интересно – ближе к схеме.

Схема стабилизатора напряжения с регулируемым ограничением выходного тока

Итак, на Х1 подаётся минус источникa напряжения, а с Х2 берётся стабилизированное и ограниченное в выходном токе напряжение. Если вкратце, то VТ3 – регулирующий, VТ4 – компаратор и усилитель сигнала ошибки стабилизатора напряжения, VТ1 — компаратор и усилитель сигнала ошибки стабилизатора выходного тока, VТ2 — датчик наличия ограничения выходного тока. За основу был взят распространённый вариант стабилизатора напряжения.

Исходная схема с фиксированным напряжением и защитой по току

Она слегка изменена, чтобы можно было менять в возможно бОльших пределах выходное напряжение, и убрать блокирование стабилизатора. Добавлен R8, чтобы сделать возможным работу схемы ограничения выходного тока на VТ1. Добавлен R7 и VD3 для установки пределов изменения выходного напряжения. Конденсаторы С1 и С2 помогут уменьшить пульсации на выходе.

Теперь позвольте мне пройтись с объяснениями по второму кругу (cм. первую схему). При появлении на входе Х1 относительно общего провода отрицательного постоянного напряжения в пределах 9. 15V, появится ток в цепи R2-VD2-R6-VD1. На стабилитроне VD1 появится стабильное напряжение. Часть этого напряжения подаётся на базу VТ4, который в результате откроется. Его ток коллектора откроет VТ3. Ток коллектора VТ3 зарядит С2, а через делитель R9, R10 часть напряжения С2 (оно же выходное) поступит на эмитер VТ4. Этот факт не позволит выходному напряжению расти больше чем удвоенное (Uбазы VT4 — 0,6V). Удвоенное потому, что делитель R9, R10 на два. Так как на базе VT4 напряжение стабильно, выходное тоже будет стабильным. Это есть рабочий режим. Транзисторы VТ1, VТ2 закрыты и никак не влияют.

Подсоединим нагрузку. Появится ток нагрузки. Он потечёт по цепи R2, Э-К VТ3 и дальше в нагрузку. R2 здесь работает датчиком тока. Пропорционально току на нём появляется напряжение. Это напряжение суммируется с частью напряжения, взятого с помощью R5 от VD2 и прилагается к базовому переходу VТ1 (R3 – чисто для ограничения тока базы VТ1 при бросках и защиты таким образом VТ1) и когда оно становится достаточным для открытия VТ1, устройство входит в режим ограничения выходного тока. Часть тока коллектора VТ4, который раньше поступал в базу VТ3, сейчас уходит через переход база-эмитер VТ2 в коллектор VТ1.
Благодаря большому коэффициенту усиления транзисторов, напряжение база-эмитер VТ1 будет поддерживаться около 0,6V. Это значит, что напряжение на R2 будет неизменным, следовательно и ток через него, а дальше через нагрузку тоже. Движком R5 можно выбирать ограничение тока от минимального до почти 3А.
При наличии режима ограничении тока открыт и VТ2, своим током коллектора он зажжёт светодиод HL1. Следует понимать, что ограничение тока «имеет приоритет» перед «стабильностью» выходного напряжения.

Читайте также:  Стабилизатор 12 вольт схема подключения

На выходе устройства я поставил вольтметр, а вот когда нужно ограничение на определённом токе, просто закорачиваю выход тестером в режиме амперметра и с помощью R5 добиваюсь желаемого.

Детали

Схемка простинькая но всё хорошее основано на большом усилении транзисторов (более 500). А VТ3 вообще составной. Букв на названиях транзисторов нет, но должны все подойти. У меня все «Г». Главное – усиление и малые утечки. В справочнике пишут, что у некоторых букв «Ку» от 200, но мои все имели более 600. Переменники попались группы А. Для VТ3 нужен радиатор. Я поставил какой был и влез в корпус. Максимальную надежность обеспечит лишь радиатор, расчитанный на рассеивание мощности равной Uвходное умножить на 3А, т.е. 30. 50Вт.
Думаю мало кому понадобится 1V на 3А долговременно, поэтому смело можно ставить радиатор в 2. 3 раза меньше.

VD2 и VD3 служат источниками напряжения в 0,6V. Можно использовать и другие кремниевые диоды. R4 – несколько сдвигает порог, когда загорается светодиод. Если он горит, значит вовсю идет ограничение выходного тока. R1 просто ограничивает ток светодиода. Потенциометры можно и с большим номиналом (в 2. 3 раза). R8 можно уменьшить (где-то до 4к), если у транзистора VТ3 не хватит усиления.

С печатной платой – как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата для другого регулируемого стабилизатора напряжения, параметры которого не устраивали. Она была превращена в макетницу и на ней собрана данная схема. Резисторы использованы на 0,25 Вт (можно и 0,125) – не вижу особых требований. При 3А (если Ваш выпрямитель их даст) – заводской проволочный R2 (2 Вт-а) будет на пределе и наверно стоит ставить мощнее (5Вт). Электролиты — К50-16 на 16V.

Eсли нет составного транзистора – «составьте» его из чего есть. Начните с КТ817 + КТ315, с буквами «Б» и дальше. (Если всё же не хватит усиления у VТ3, я бы уменьшил R9 и R10 до 200 Ом и R8 до 2 кОм).

Трансформатор, выпрямитель и конденсатор фильтра – Ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе. (У меня стоит 10-ватный транс на 10V/1А переменного, откуда-то взятый блочный мостик на 1А, и 4000мкФ/16V электролит фильтра. Стыдно, зато всё влезает в корпус.

Нужно заметить, что стрелочный индикатор (в схеме не указан) с помощию переключателя, можно использовать и как вольтметр и как амперметр. В первом случае видим выходное напряжение, во втором выходной ток.

Итого

Вышерасписанное устройство у меня работает в составе «всё в одном»: развитый (хоть и однополярный) блок питания, частотомер и генератор звуковых частот (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Работают не совсем так как хотелось бы. Во-первых потому, что внёс слишком много «несанкционированных» изменений – особенно в элементной базе – поставил что имел.) Конечно имеется возможность работы головки вольтметра в качестве индикатора частоты в частотомере. При пользовании генератором – частотомер показывает частоту. Имеется и выход переменного напряжения 6,3V и 10V , на всякий случай.

Корпус, который виден на фотографии не ахти, чтобы его повторять. И вообще: всё там задумывалось, как зеркальное отражение, но загнул переднюю панель по ошибке не в ту сторону. Я растроился и не стал уже его никак украшать.

Файлы

Виктор Бабешко повторил конструкцию, прислал свой вариант печатки и фотку.
Файл в LayOut:

Источник

Стабилизаторы с ограничением тока регулируемые

Микросхемы (далее ИМС) линейных стабилизаторов напряжения очень удобны для применения в различных схемотехнических проектах, не требующих высоких КПД и больших мощностей. При использовании правильных схемотехнических решений, они обеспечивают более высокую надёжность (за счёт меньшего числа компонентов, даже с учётом интегральных) и меньший уровень шумов, кроме того такие источники питания проще в проектировании и реализации. Дополнительным плюсом также являтся то, что многие ИМС стабилизаторов обеспечивают встроенную защиту от перенапряжения, от превышения тока и от переполюсовки входного напряжения — всё это позволяет в большинстве случаев обойтись без дополнительных элементов в схеме.

Из недостатков данных решений следует отметить два основных:

  • Низкий КПД — «лишнее» напряжение такие схемы фактически сбрасывают в тепло, что, соответственно, в большинстве случаев требует применения дополнительного охлаждения.
  • Необходимость положительной разницы напряжений между входом и выходом — даже самые лучшие модели линейных стабилизаторов имеют падение напряжения около 0.4В, а большинство перестаёт работать уже при разнице 0.5В.

Несмотря на все недостатки, такие схемы часто вполне уместно использовать в своих проектах. В данной статье пойдёт речь о различных схемотехнических особенностях применения данных микросхем.

Стабилизаторы с фиксированным напряжением

Интегральные линейные стабилизаторы могут иметь фиксированное выходное напряжение, либо же иметь возможность выбора выходного напряжения. Начнём с рассмотрения базовых схем включения большинства фиксированных интегральных стабилиазторов напряжения:

Схема включения стабилиазторов напряжения с фиксированным выходным напряжением

Конденсатор C1 рекомендуется ставить для предотвращения возникновения «генерации на входе», если микросхема стабилизатора находится дальше 10 см от источника напряжения — по сути это просто фильтрующий конденсатор. Мы в своих проектах ставим на вход конденсатор в любом случае. Рекомендуется использовать керамику или тантал, ёмкостью не менее 0.1 мкФ. При выборе номинала ёмкости керамики помните, что при повышении температуры у большинства керамических кондёров сильно падает ёмкость.

Назначение конденсатора C2 различается в зависимости от внутренней схемы стабилизатора. Например в микросхемах серии КР1158ЕН, данный элемент обеспечивает отсутствие возбуждения выходного напряжения. А производитель LM317 отмечает, что выходной конденсатор служит лишь для улучшения переходной характеристики и на стабильность не влияет. Так или иначе, при использовании конденсатора малой ёмкости (1-2 мкФ) на выходе многих линейных стабилизаторов наблюдаются небольшие колебания выходного напряжения с частотой несколько кГц и амплитудой порядка 0.2-0.4 вольт. Увеличение выходного конденсатора до 10 мкФ полностью данные колебания убирает.

Читайте также:  Срыв потока с стабилизатора

Оба конденсатора необходимо размещать как можно ближе к корпусу микросхемы.

Диод Д1 ставить не обязательно, в большинстве типовых схем его не используют, но если вы используете конденсатор C2 или выходные напряжения превышают 25 В, диод Д1 рекомендуется всё-таки оставлять, поэтому я оставил его на схемах. Также, данный диод рекомендуется использовать если нагрузка носит индуктивный характер. Он обеспечивает путь для разрядки C2, а в случае индуктивной нагрузки ограничивает броски тока через стабилизатор.

Стабилизаторы с регулируемым напряжением

В схемах с регулируемым выходным напряжением добавляются дополнительные элементы:

Схема включения стабилизаторов напряжения с регулируемым выходным напряжением

Конденсатор C3 уменьшает пульсации выходного напряжения. Рекомендуемый номинал C3 — от 1 до 10 мкФ, большее значение ёмкости значимых улучшений не даёт.

Диод Д2 нужен при использовании C3 — он обеспечивает его разрядку при выключении питания. При отсутствии C3 достаточно диода Д1.

Резисторы R1 и R2 используются для задания выходного напряжения. Регулируемый стабилизатор стремится поддерживать опорное напряжение (Vref) между выводом подстройки и выходом. Поскольку значение опорного напряжения является постоянным, величина тока, протекающего через делитель R1 и R2 определяется только резистором R2. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1.2 до 1.3 В, и в среднем составляет 1.25 В. Напряжение на выходе фактически является суммой падения напряжения на R1 и Vref, т.о., чем больше будет падение напряжения на R1, тем больше будет напряжения на выходе.

Рекомендуемый номинал резистора R2 240 Ом, но допустимо его варьировать в пределах 100-1000 Ом. Выходное напряжение рассчитывается по следующей формуле:

Согласно спецификации значение Iadj лежит в диапазоне 50-100 мкА, поэтому при малых R1 им можно пренебречь.

Повышение напряжения стабилизации регуляторов с фиксированным выходным напряжением

Выходное напряжение фиксированных линейных регуляторов можно повысить, включив в цепь подстройки стабилитрон:

Схема повышения напряжения стабилизации регуляторов с фиксированным выходным напряжением

В этой схеме выходное напряжение повысится на величину напряжения стабилизации Vстаб стабилитрона Д2. Резистор R служит для установки тока через стабилитрон и выбирается исходя из параметров стабилитрона. Для большинства стабилитронов подходит R = 200 Ом.

Если поднять напряжение нужно на небольшую величину (0.5 — 1.5 В) вместо стабилитрона Д2 можно использовать практически любой диод в прямом включении (катод на землю). Тогда выходное напряжение будет увеличено на величину падения напряжения на диоде, а резистор R нужно исключить, потому что колебания тока из вывода подстройки невелики и падение напряжения на диоде будет практически постоянным.

Ограничитель тока на линейном стабилизаторе

На микросхемах линейных стабилизаторов типа LM317 (и аналогичных) удобно собирать схему ограничителя тока, для этого требуется всего один дополнительный резистор.

Ограничитель тока на линейном стабилизаторе

Выходное напряжение зависит от входного напряжение и падения напряжения на стабилизаторе. В данной схеме регулируемые стабилизаторы стремятся поддерживать на выходе напряжение Vref

1.25В, поэтому выходной ток определяется соотношением:

Для ИМС с фиксированным напряжением Vref заменяется на Vном., и ток через резистор получается слишком большим (как если бы микросхемы не было), поэтому применение стабилизаторов с фиксированным напряжением в данной схеме нецелесообразно.

Рассеиваемая резистором мощность вычисляется по формуле:

Данная схема будет работать также на всей серии LM340 и аналогичных ИМС.

Увеличение максимального тока ИМС линейных регуляторов

Есть способ увеличить максимальный ток линейного линейного стабилизатора тока.

Схема увеличения максимального тока линейного токового стабилизатора

В данной схеме R1 определяет напряжение открытия транзистора T1:

Здесь Vоткр. — напряжение открытия T1, а Iстаб.max максимальный ток протекающий через стабилизатор (ток, при котором откроется T1). Рекомендуется выбирать Iстаб.max меньше максимального тока микросхемы по спецификации, чтобы был некоторый запас.

Микросхема поддерживает падение напряжения между выходом и выводом подстройки и в случае превышения тока через R2 уменьшает ток через себя, что вызывает уменьшение падения напряжения на R1 и последующее закрытие транзистора. Таким образом, максимальный выходной ток определяется резистором R2 и опорным напряжением микросхемы:

Следует помнить, что при быстрых бросках тока T1 может не успеть закрыться, что вызовет повреждения элементов, поэтому следует использовать дополнительные компоненты для защиты транзистора (здесь не показаны).

Повысить ток можно и для стабилизатора напряжения, включив его по аналогичной схеме (но без R2), однако следует помнить, что в этом случае схема лишится автоматического ограничения по току и превышение максимального значения повлечёт за собой повреждение элементов.

Стабилизатор с плавным нарастанием выходного напряжения

Схема стабилизатора с плавным нарастанием выходного напряжения

При включении питания напряжение на конденсаторе C2 начинает возрастать, вместе с ним возрастает и выходное напряжение. PNP транзистор выключается когда выходное напряжение достигает значения, определяемого резисторами R1 и R2 (как в обычной схеме регулируемого стабилизатора). Начальное выходное напряжение складывается из начального напряжения на конденсаторе, падения на база-эммитерном переходе и опорного напряжения микросхемы. Скорость нарастания напряжения можно регулировать изменяя номиналы R3 и C2.

Управляемый стабилизатор напряжения с дискретными уровнями выходного напряжения

На регулируемом стабилизаторе можно собрать простой управляемый стабилизатор напряжения, добавивь несколько резисторов и транзисторов. Данное решение удобно, если требуется собрать простой регулируемый стабилизатор с несколькими фиксированными уровнями напряжения.

Управляемый стабилизатор напряжения

Резистор R2 рассчитывается на максимальное требуемое напряжение. Включение транзистора будет добавлять в параллель к проводимости резистора R2 дополнительную проводимость и напряжение на выходе будет снижаться. Не забывайте подтягивать базы транзисторов через высокоомные резисторы к питанию, либо к земле (в зависимости о того закрыт или открыт должен быть транзистор без управляющего сигнала).

Конденсатор C2 в данной схеме допустимо не использовать, так как транзисторы обладают некоторой собственной ёмкостью.

Источник