Меню

Стабилизаторы мощности постоянного тока



Стабилизаторы тока. Виды и устройство. Работа и применение

Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.

Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы тока.

Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.

Устройство и принцип действия

На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.

Ustroistvo i printsip deistviia

В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)

Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.

Виды стабилизаторов тока

Существует множество разных видов стабилизаторов в зависимости от их назначения и принципа работы. Рассмотрим подробнее основные из таких устройств.

Стабилизаторы на резисторе

В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.

Stabilizator na rezistore

Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.

Стабилизаторы на транзисторах

Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.

Stabilizator toka na tranzistore

Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.

Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.

Схема токового зеркала

Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.

Stabilizator toka zerkalo

Стабилизаторы тока на полевике

Схема с применением полевых транзисторов более простая.

Stabilizator toka na polevike

Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.

Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.

При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.

Устройства на микросхеме

В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.

Stabilizatory toka LМ 317

Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.

Импульсный стабилизатор

Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.

Impulsnyi stabilizator

Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.

Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.

Impulsnyi stabilizator 2

При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.

Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.

Стабилизаторы тока для светодиодов

Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:

  • Блок от принтера на 32 В.
  • Блок от ноутбука на 19 В.
  • Любой блок питания на 12 В.

Stabilizatory toka dlia svetodiodov

Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.

Источник

Регуляторы напряжения на 220 В своими руками

Создав регулятор напряжения 220 В (в дальнейшем РН), пользователь получит возможность определять его величину, поступающую в электроприборы. Станет возможной настройка уровня нагрева, света, оборотов не слишком мощных моторов бытовых аппаратов простым поворотом селектора на такой самоделке. Сборка не слишком сложная, поэтому кустарное изготовление целесообразное. Мы выбрали и рассмотрели самые понятные схемы с обозначением характеристик деталей для конструирования РН 0–220 В своими руками.

Что такое регулятор напряжения 220 В

Сокращенное название рассматриваемого прибора — РН 0–220 В. Самый простой такой аппарат — это диммер для ламп накаливания. Устройство настраивает сетевые параметры напряжения, повышает/понижает степень выходного сигнала на диапазоне, зависимом от значения разности потенциалов на его выходе. Поддерживает заданный вольтаж цепи потребителя.

Аппарат регулирует (плавно или ступенчато) именно саму величину напряжения, вольтаж, от которого также зависит мощность в диапазоне возможностей подключенного агрегата. Работает с нагрузкой реактивной, активной, только надо уточнять, подходит ли конкретная сборка, особенно для последней. А также всегда надо сопоставлять, на какую обслуживаемую мощность (Ватты) рассчитана схема.

РН изменяет согласно настройкам пользователя уровень выходного сигнала из сети 220 В, подаваемый на подключенную к нему нагрузку. Таким образом, устанавливается параметр, подходящий для запитывания конкретного прибора, а чаще для регулировки его работы (снижение/повышение оборотов маломощных электромоторов, яркости света).

Важно: РН-220 В понижает/повышает только значение напряжения (В), выходящего из сети 220 В — ток (Амперы), мощность (Вт, кВт) он не регулирует, эти величины изменяются уже самой полезной нагрузкой, ограниченной рамками своих характеристик, согласно поданным вольтам. Прибор иногда называют «регулятором мощности», так как изменяются также возможности подключенного потребителя по указанным параметрам. Но РН надо отличать от такового, как и от регулятора тока.

Регулятор напряжения применяют:

  • для изменения оборотов небольших моторчиков бытовых устройств (скорости блендера, фена), реже, поскольку не все схемы подходят, — для более мощных двигателей (например, дрели);
  • для других приборов, работу которых можно настраивать. А чаще (и это наиболее корректное и эффективное использование) для уровня освещенности (диммер), громкости звука, нагрева ТЭНов, паяльника,
  • во всех случаях, если на цепи надо создать определенное напряжение, например, 12 В.
Читайте также:  Стартер уаз 469 мощность

Чаще всего бытовой РН 0–220 В применяется для плавного вкл./выкл. приборов.

В заводских моделях обычно также есть микросхема для стабилизации напряжения при его скачках, обеспечивающая работу приборов в любом режиме. Тиристорный регулятор по англоязычным стандартам именуют Voltage Controller. РН снабжают универсальные блоки питания, на которых можно настраивать вольтаж.

Виды, принцип работы, особенности

РН по нашей теме предназначен только для переменного напряжения, то есть для обычной домашней сети 220 В.

Чаще всего собирают на базе таких деталей:

  • тиристоры;
  • симисторы;
  • транзисторы.

В схемах присутствуют также конденсаторы, резисторы постоянные, настроечные. Именно селекторами последних осуществляется регулировка. Сложные сборки могут включать микросхемы.

РН максимально результативные для резистивных (активных, омических) нагрузок, то есть являющихся частью потребляемой мощности подсоединяемого/отключаемого потребителя. Это сопротивление движению тока, например, в виде резистора, на точке, где электричество преобразовывается в тепло.

Резистивная нагрузка — это нагревательные элементы, ТЭНы, лампы накаливания (не «экономки»).

В индуктивной нагрузке ток (там он значительно ниже, чем при резистивной) отстает от напряжения, создается реактивная мощность. Это асинхронные электродвигатели, электромагниты, дроссели, трансформаторы, выпрямители. С ними РН не будут работать или будут, но не эффективно, создавая риск поломки оборудования. Там регуляторы напряжения не всегда целесообразные.

Тиристорный прибор нельзя использовать со светодиодными (экономными) и люминисцентными лампами. Конденсаторные регуляторы не позволяют плавно менять напряжение.

Сборка регулятора напряжения на симисторах

В основе работы симисторного РН — фазовое смещение открывания ключа. Детали схемы можно разделить на две группы:

  • силовые (ключ) — симистор;
  • создающие управляющие импульсы, база на симметричном динисторе.

С помощью резисторов R1 и 2 сконструирован делитель напряжения. Сопротивление на первом переменное, что дает возможность регулировать значение на отрезке R2–C1. Между указанными деталями поставлен динистор DB3. Конструкция работает с мощностью около 100–150 Вт.

  1. В момент достижения напряжения на конденсаторе C1 точки открытия динистора, на симистор (он же является силовым ключом) VS1 поступает импульс для управления — он активируется.
  2. Через симистор начинает протекать ток на подключенный прибор.
  3. Положением регулятора выставляют часть фазы волны, где срабатывает силовой ключ.

Второй вариант

Данный способ сборки на симисторе своими руками почти аналогичен предыдущему. Схема базируется на дешевом симисторе BT136. Сборка предназначена для работы в пределах 100 Вт.

Как работает: через цепь DN1 (динист.) — C1 (конд.) — D1 (диод) ток течет на DN2 (симист.). Последний открывается и момент этого зависит от емкости C1, заряжаемого через R1 и 2 (резисторы). Получается требуемый алгоритм: модуляцией сопротивления R1 настраивается скорость заряда конденсатора.

Конструкция чрезвычайно простая, но отлично справляется с настройкой вольтажа нагревательных приборов с вольфрамовой нитью. Но есть минус: отсутствует обратная связь, поэтому применять самоделку для регулировки оборотов коллекторного электродвигателя нельзя.

Третий вариант РН на симисторе с иллюстрацией этапов, фото деталей

Нижеуказанная схема может обслужить нагрузку до 1 кВт. Потребуется конденсатор 0.1 мкФ×400 В и следующее:

Графически схема выглядит так:

Детали можно спаять между собой, но рассмотрим вариант с платой — ее вытравливают и лудят стандартными методами, макет ниже:

Припаиваем симистор, переменный резистор. Конденсатор в нашем случае на плате со стороны лужения, так как у пользователя он был со слишком короткими ножками.

Далее, динистор: у него нет полярности, вставляем как угодно. Затем установка всего остального: диода, резистора, светодиода, перемычки, винтового клеммника.

Конструкция помещается в любую коробочку, пример:

Самоделка в дополнительных настройках не нуждается. Можно применять не только для сети 220 В на стандартные приборы, но и для любого источника с переменным током от 20 до 500 В. Данный диапазон определен предельными характеристиками радиоэлементов.

На транзисторах

Сборки на транзисторах больше подходят для индуктивной нагрузки, ими можно регулировать обороты электродвигателей.

Простая схема

Данная сборка очень практичная — этот регулятор напряжения представляет собой простой блок питания, универсальный адаптер к радиоустройствам на разные напряжения (вольтаж). Собрать сможет даже пользователь с начальными познаниями и небольшим опытом.

  • транзистор КТ815Г, можно и 817 Г;
  • переменник на 10 кОм;
  • резистор стандартный 0.125 Вт на 1 кОм

Спаять элементы можно без площадки, но покажем, как это сделано с ней. Создаем плату:

  1. Транзистор, важно не перепутать его выводы (эмиттер и базу).
  2. Резистор на 1 кОм.
  3. Впаиваем с проводами переменник на 10 кОм. Можно применить и другой, припаять сразу, без них, если позволяет типоразмер.
  4. Четыре вывода — к питанию, к выходам.

Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку (лампу), моторчик, тот же светодиод (в нашем примере он). Двигаем регулятор — наблюдаем изменение напряжения.

Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819.

Другие варианты маломощных транзисторных схем

С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует (отпирает) первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный.

Мощная сборка

Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз. (маломощного), а тот посредством коллекторно-эмиторного перехода осуществляет управление базой уже мощного транз., который реализует открывание/закрывание симистора. Так создается возможность очень плавной настройки огромных токов на нагрузке.

Схема самодельного РН 220 В с тиристорами

Тиристорные сборки также эффективные, одновременно они не отличаются особой сложностью. Силовым ключом тут выступает тиристор. Главное отличие от самоделок на симисторах — каждая полуволна имеет свой индивидуальный ключ, снабженный динистором для управления.

Для схемы взяли отечественные детали. При установке тиристора VS1, диодов VD1–VD4 на радиаторы (охладители), то устройство сможет работать с нагрузкой в 10 А: при 220 В можно будет обслуживать 2.3 кВт.

Читайте также:  Измерение электрической мощности приборы схемы включения

В сборке лишь 2 силовых элемента: диодный мост, тиристор. Детали рассчитаны на 400 В, ток 10 А. мост трансформирует переменное напряжение в однополярное пульсирующее, фазовую настройку полупериодов обеспечивает тиристор.

R1 и 2, стабилитрон VD5 — это параметрический стабилизатор, ограничивающий напряжение, подаваемое в узел управления на отметке 15 В. Последовательное размещение резисторов требуется для повышения пробивного напряжения и рассеиваемой мощности.

C1 без заряда, в месте соединения R6 и 7 тоже нулевое напряжение, но постепенно оно там растет. Чем ниже сопротивление на резисторе R4, тем быстрее через эммитер VT1 перегонится напряжение на его базе, транзистор откроется. VT1 и 2 (транзисторы) — это состав маломощного тиристора. При достижении значения на переходе база/эмиттер VT1 пороговой отметки транзистор открывается и отпирает VT2, а тот в свою очередь — тиристор.

Второй вариант

Описанным ниже регулятором настраивают скорость вращения электродвигателей, нагрев паяльника и подобное. Такой прибор отчасти верно назвать регулятором мощности, но правильно будет также именовать его и РН, так как, по сути происходит регулировка фазы — времени, за которое сетевая полуволна попадает в нагрузку. С одной стороны настраивается напряжение через скважность импульса, с иной — мощность появляющаяся на нагрузке.

Наиболее результативный прибор для резистивной нагрузки — лампочек, нагревателей. С индуктивной будет справляться, но не так эффективно, при слишком малой величине точность диапазона настройки снизится. Существуют две почти идентичные схемы по описываемому варианту:

Схема регулятора состоит из доступных деталей, ее можно полностью собрать из таковых даже советского периода. При включении (как на изображении) выпрямительных диодов прибор выдержит до 5 А, что соответствует 800 Вт…1 кВт. Но надо поставить радиаторы для охлаждения.

  • тирист. КУ202Н;
  • Т1–Т2 (КТ315 и КТ361) — это аналог 1-переходного транзистора.
  1. Когда напряжение на конд. С1 (470 nF) сравнивается таковому в точке соединения резист. R3 и 4 (10 кОм и 2.2 кОм), тогда транзисторы открываются.
  2. От них подается импульс управляющему электроду тиристора.
  3. При этом C1 тратит свой заряд, тиристор открывается до следующего полупериода.

Мощность можно повысить, если заменить диоды, рассчитанные на больший необходимый ток. Также можно вместо тиристора КУ202 с пределом в 10 А поставить помощнее: Т122, Т132, Т142.

Деталей не много, допустим навесной монтаж, но с платой сборка будет красивее и комфортнее. Стабилитрон Д814В можно поменять на любой с 12–15 В. Из коробочки выведен разъем для вилки.

Модификация, особенности, демонстрация работы

Схема также может поместиться в корпусе наружной розетки, в маленькой пластиковой распаячной коробке. Мощность самоделки ограничена диодным мостом (1000 В, 4 А), тиристором. Напомним, в нашем примере предел чуть больше 800 Вт, максимум — 1000 Вт. Для бытовых условий этого более чем достаточно.

Радиаторы на тиристоры и диоды крайне рекомендованы — в данном случае они не просто желательные, а жизненно необходимые, так как перегрев может быть значительным. Минимальная мощность резистора R1 — 2 Вт

Другие популярные схемы

Приведем простые, доступные проверенные схемы. Опишем их кратко, так как на самом изображении есть расшифровка элементов.

Для паяльника

Чрезвычайно простые схемы для плавной регулировки нагрева паяльника применяют для предотвращения перегрев жала.

Первая схема включает мощный симистор, управляющий линией тиристор-переменник.

Другой простейший вариант для паяльника: нагрузка управляется одним тиристором, степень включения его определяется регулировкой переменного резистора, диод поставлен для защиты от обратного напряжения.

На микросхеме

Применена микросхема фазового регулирования 1182ПМ1. Этот контроллер управляет уровнем открытия симистора, который контролирует нагрузку. Хорошо подойдет для настройки яркости лампочек накаливания.

Для лампочек накаливания с тиристором

Данная сборка регулирует накал обычных лампочек. Регулятор напряжения 220 В на тиристоре своими руками конструируется из диодного моста, конденсатора, двух резисторов — постоянного и переменника. Селектором последнего меняется влияние на ключ этого тиристора, что модулирует его пропускную способность по току.

Советы

Фазные регуляторы создают значительные помехи в сети, поэтому на кабель питания ставят сглаживающие фильтры. Самыми элементарными такими приспособлениями являются ферритовые кольца (часто их имеют шнуры компьютерные, от мониторов). Есть разборные блочки с ними, устанавливаемые защелкиванием, но также можно такие кольца взять от трансформаторов от б/у плат с микросхемами.

Все элементы обязательно изолируют, учитывают, что на них подается 220 В и значительный ток.

Предостережения по индуктивной нагрузке

При высокоиндуктивной нагрузке, для которой характерно отставание тока напряжения, тиристоры могут не закрываться до конца, есть риск поломки обслуживаемых приборов — дрелей, шлифмашинок, болгарок. Поэтому надо уточнять на спецфорумах параметры сборки для такого оснащения, для него есть именно специализированные устройства — регуляторы оборотов.

Тиристорный РН хорошо функционирует в коллекторных двигателях со щеточными узлами, в асинхронных устройствах изменять обороты не сможет.

Источник

Простейший стабилизатор постоянного тока

Полупроводниковый прибор, о котором пойдет речь, предназначен для стабилизации тока на требуемом уровне, обладает низкой стоимостью и дает возможность упростить разработку схем многих электронных приборов. Попытаюсь немного восполнить недостаток информации о простых схемотехнических решениях стабилизаторов постоянного тока.

Немного теории

Идеальный источник тока обладает бесконечно большим ЭДС и бесконечно большим внутренним сопротивлением, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки.

Условное графическое обозначение источника тока:

Условное графическое обозначение источника тока

Рассмотрение теоретических допущений о параметрах источника тока помогает понять определение идеального источника тока. Ток, создаваемый идеальным источником тока остается постоянным при изменении сопротивления нагрузки от короткого замыкания до бесконечности. Для поддержания величины тока неизменной значение ЭДС меняется от величины не равной нулю до бесконечности. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.

beginner113-2.png

Реальные источники тока поддерживают ток на требуемом уровне в ограниченный диапазон напряжения, создаваемого на нагрузке и ограниченном сопротивление нагрузки. Идеальный источник рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и перейти на режим работы с сопротивлением нагрузки более нуля.

Реальный источник тока используется совместно с источником напряжения. Сеть 220 вольт 50 Гц, лабораторный блок питания, аккумулятор, бензиновый генератор, солнечная батарея – источники напряжения, поставляющие электроэнергию потребителю. Последовательно с одним из них включается стабилизатор тока. Выход такого прибора рассматривается как источник тока.

beginner113-3.png

Простейший стабилизатор тока представляет собой двухвыводной компонент, ограничивающий протекающий через него ток величиной и точностью соответствующей данным фирмы изготовителя. Такой полупроводниковый прибор в большинстве случаев имеет корпус, напоминающий диод малой мощности. Благодаря внешнему сходству и наличию всего двух выводов компоненты этого класса часто упоминаются в литературе как диодные стабилизаторы тока. Внутренняя схема не содержит диодов, такое название закрепилось только благодаря внешнему сходству.

Примеры диодных стабилизаторов тока

Диодные стабилизаторы тока выпускаются многими производителями полупроводников.

1N5296
Производители: Microsemi и CDI

Ток стабилизации 0,91мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 1,29 В
Максимальное импульсное напряжение 100 В

Читайте также:  Ватт это напряжение или мощность

beginner113-4.jpg

E-103
Производитель Semitec

Ток стабилизации 10 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4,2 В
Максимальное импульсное напряжение 50 В

beginner113-5.jpg

L-2227
Производитель Semitec

Ток стабилизации 25 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4 В
Максимальное импульсное напряжение 50 В

beginner113-6.jpg

От теории к практике

Применение диодных стабилизаторов тока упрощает электрические схемы и снижает стоимость приборов. Использование диодных стабилизаторов тока привлекательно не только своей простотой, но и повышением устойчивости работы разрабатываемых приборов. Один полупроводник этого класса в зависимости от типа обеспечивает стабилизацию тока на уровне от 0,22 до 30 миллиампер. Наименования этих полупроводниковых приборов по ГОСТу и схемного обозначения найти не удалось. В схемах статьи пришлось применить обозначение обычного диода.

При включении в цепь питания светодиода диодный стабилизатор обеспечивает требуемый режим и надежную работу. Одна из особенностей диодного стабилизатора тока – работа в диапазоне напряжений от 1,8 до 100 вольт позволяющая защитить светодиод от выхода из строя при воздействии импульсных и длительных изменений напряжения. Яркость и оттенок свечения светодиода зависят от протекающего тока. Один диодный стабилизатор тока может обеспечить режим работы нескольких последовательно включенных светодиодов, как показано на схеме.

Последовательно включенные светодиоды

Эту схему легко преобразовать в зависимости от светодиодов и напряжения питания. Один или несколько параллельно включенных диодных стабилизаторов тока в цепь светодиодов зададут ток светодиодов, а количество светодиодов зависит от диапазона изменения напряжения питания.

С помощью диодных источников тока можно построить индикаторный или осветительный прибор, предназначенный для питания от постоянного напряжения. Благодаря питанию стабильным током источник света будет иметь постоянную яркость свечения при колебаниях напряжения питания.

Использование резистора в цепи светодиода индикатора напряжения питания двигателя постоянного тока станка сверловки печатных плат приводило к быстрому выходу светодиода из строя. Применение диодного стабилизатора тока позволило получить надежную работу индикатора. Диодные стабилизаторы тока допускается включать параллельно. Требуемый режим питания нагрузок можно получить, меняя тип или включая параллельно требуемое количество этих приборов.

beginner113-8.png

При питании светодиода оптопары через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, накладывающимся на фронт прямоугольного импульса. Применение диодного стабилизатора тока в цепи питания светодиода, входящего в состав оптопары, позволяет снизить искажение цифрового сигнала, передаваемого через оптопару и увеличить надежность канала информации.

Применение диодного стабилизатора тока задающего режим работы стабилитрона позволяет разработать простой источник опорного напряжения. При изменении питающего тока на 10 процентов напряжение на стабилитроне меняется на 0,2 процента, а так как ток стабилен, то величина опорного напряжения стабильна при изменении других факторов.

beginner113-9.png

Влияние пульсаций питающего напряжения на выходное опорное напряжение уменьшается на 100 децибел.

Внутренняя схема

Вольтамперная характеристика помогает понять работу диодного стабилизатора тока. Режим стабилизации начинается при превышении напряжения на выводах прибора около двух вольт. При напряжениях более 100 вольт происходит пробой. Реальный ток стабилизации может отклоняться от номинального тока на величину до десяти процентов. При изменении напряжения от 2 до 100 вольт ток стабилизации меняется на 5 процентов. Диодные стабилизаторы тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при увеличении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 миллиампера, позволяет получить более высокие параметры, чем у одного на 10 миллиампер. Так как уменьшается минимальное напряжение стабилизации тока, то диапазон напряжения в котором работает стабилизатор увеличивается.

ВАХ диодного стабилизатора тока

Основой схемы диодного стабилизатора тока является полевой транзистор с p-n переходом. Напряжение затвор-исток определяет ток стока. При напряжении затвор-исток равному нулю ток через транзистор равен начальному току стока, который течет при напряжении между стоком и истоком более напряжения насыщения. Поэтому для нормальной работы диодного стабилизатора тока напряжение, приложенное к выводам должно быть больше некоторого значения от 1 до 3 вольт.

Полевой транзистор

Полевой транзистор имеет большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные стабилизаторы тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком.

При смене полярности напряжения диодный стабилизатор тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных стабилизаторов тока может достигать 100 миллиампер.

Источник тока 0.5А и более

Для стабилизации токов силой 0,5-5 ампер и более применима схема, главный элемент которой мощный транзистор. Диодный стабилизатор тока стабилизирует напряжение на резисторе 180 Ом и на базе транзистора КТ818. Изменение резистора R1 от 0,2 до10 Ом изменяется ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Применение диодного стабилизатора тока с наиболее возможным номинальным током стабилизации улучшает стабильность выходного тока схемы, но при этом нельзя забывать о минимально возможном напряжении работы диодного стабилизатора тока. Изменение резистора R1 на 1-2 Ом значительно меняет величину выходного тока схемы. Этот резистор должен иметь большую мощность рассеяния тепла, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор R1 лучше собрать из нескольких параллельно включенных мощных резисторов. Резисторы, применённые в схеме должны иметь минимальное отклонение сопротивления при изменении температуры. При построении регулируемого источника стабильного тока или для точной настройки выходного тока резистор 180 Ом можно заменить переменным. Для улучшения стабильности тока транзистор КТ818 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора. При использовании составного транзистора минимальное напряжение стабилизации увеличивается.

beginner113-12.png

Эту схему можно использовать для питания соленоидов, электромагнитов, обмоток шаговых двигателей, в гальванике, для зарядки аккумуляторов и других целей. Транзистор обязательно устанавливается на радиатор. Конструкция прибора должна обеспечивать хороший теплоотвод.

Если бюджет проекта позволяет увеличить затраты на 1-2 рубля и конструкция прибора допускает увеличение площади печатной платы, то использую параллельное объединение диодных стабилизаторов тока можно улучшить параметры разрабатываемого прибора. Соединенные параллельно 5 компонентов 1N5305 позволят стабилизировать ток на уровне 10 миллиампер, как и компонент СDLL257, но минимальное напряжение работы в случае пяти 1N5305 составит 1,85 вольт, что важно для схем с напряжением питания 3,3 или 5 вольт. Также к положительным свойствам 1N5305 относится его доступность, по сравнению с приборами производителя Semitec. Соединение параллельно группы стабилизаторов тока вместо одного позволяет снизить нагрев разрабатываемого прибора и отодвинуть верхнюю границу температурного диапазона.

Увеличение рабочего напряжения

Для использования диодных стабилизаторов тока при напряжениях более напряжения пробоя последовательно включается один или несколько стабилитронов, при этом область напряжений работы диодного ограничителя тока смещается на величину стабилизации напряжения стабилитроном. Схему можно использовать для грубого определения превышения порогового значения напряжения.

beginner113-13.png

Найти отечественные аналоги зарубежных диодных стабилизаторов тока не удалось. Вероятно с течением времени ситуация с отечественными диодными стабилизаторами тока изменится.

Источник

Adblock
detector