Меню

Способы регулировки стабилизатора напряжения



Регулировка стабилизатора напряжения

Величина напряжения в сети является одним из важнейших параметров качества электроэнергии, который позволяет обеспечить надёжную и бесперебойную работу подключаемых потребителей. С использованием централизованных линий электропередач сегодня практически невозможно гарантировать точность соблюдения заявленных 220/380 В (или других уровней). Лучше всего с этой задачей будет справляться стабилизатор напряжения как устройство, которое позволит не допустить аварийных ситуаций

  • при скачках сетевых параметров в момент коммутации,
  • аварийных ситуациях в питающей линии,
  • импульсных процессах.

Сфера использования устройств этого типа не ограничивается бытовыми моделями. В зависимости от особенностей использования и места их установки могут иметь место стационарные или портативные приборы. Для обеспечения достаточно высокой надёжности в работе подобных систем важно соблюдать не только правила выбора, должна быть обеспечена корректная регулировка стабилизатора напряжения.

Основы выбора устройств и их последующей подготовки к работе

В большинстве случаев используются модели стационарной установки, подключаемые непосредственно к проводке на входе, а на выходе – к электроприборам (насосам, холодильным установкам, кондиционерам, котлам отопления). В зависимости от особенностей сети это могут быть одно- или трёхфазные устройства, которые дополнительно классифицируются по своему устройству

  • на релейные,
  • симисторные,
  • феррорезонансные,
  • электромеханические.

Основные виды устройств стабилизации сетевых параметров

Для каждой из перечисленных модификаций характерны свои особенности.

  • Релейный аппарат конструктивно состоит из управляемого электроникой силового реле и автотрансформатора. Предусмотрено автоматическое переключение обмоток, а также ступенчатая регулировка стабилизатора напряжения. За счёт этого при использовании данного вида устройств необходимо учитывать, что они не отличаются высокой точностью выходных параметров, поэтому рекомендуются к установке в основном для защиты бытовых приборов небольшой мощности.
  • Электронные (симисторные) стабилизаторы благодаря отсутствию в составе конструкции механических составляющих выделяются своей бесшумной работой. Но в данном случае регулировка сетевых параметров выполняется по релейному принципу, что не позволяет обеспечить достаточно высокой точности в работе. При этом существенно более высокая стоимость в сравнении с аппаратами других типов стала причиной того, что симисторные стабилизаторы не пользуются широкой популярностью.
  • Феррорезонансное оборудование работает строго в заданном пользователем диапазоне с потребителями мощностью 100 Вт – 8 кВт. При этом его коэффициент стабилизации может варьироваться в пределах 20-30. Среди преимуществ выделяют способность
  1. к длительной эксплуатации за счёт отсутствия в составе конструкции подвижных элементов,
  2. бесступенчато регулировать напряжение,
  3. быстро стабилизировать заданные параметры,
  4. работать с высокой точностью.
  • Сервоприводные стабилизаторы отличаются возможностью выполнения плавной регулировки напряжения без искажения её синусоидальной формы, что обеспечивает стабильно корректную работу электроприёмников. Кроме того, они не вырабатывают помехи, обеспечивают высокую точность на выходе при большом рабочем ресурсе. Предлагается широкий модельный ряд по мощности для одно- и трёхфазных сетей в пределах 0,5 ВА÷30 кВА и 1,5 кВА÷2 МВА соответственно.

Установка и регулировка стабилизатора напряжения

Правильный выбор оборудования в данном случае – основа, но в любом случае для его корректной работы потребуется правильное подключение, установка, регулировка. Стоит изначально обратить внимание на то, что к монтажу допускаются только приборы без механических повреждений, выдержанные при нормальной температуре эксплуатации не менее 2 ч в том случае, если транспортировка выполнялась при минусовых температурах. Таким образом удастся избежать появления конденсата внутри стабилизатора.

Сама процедура монтажа выполняется по алгоритму, тонкости которого зависят от особенностей сферы использования. Но в целом местом установки может быть закрытое помещение, в котором аппарат не будет подвергаться воздействию строительной пыли, агрессивных сред, находиться вблизи легковоспламеняющихся материалов. Корпус стабилизатора напряжения должен быть обязательно заземлён, для подключения используются клеммы, которые расположены на задней корпусной панели.

Регулировка стабилизатора заключается в установке заданных выходных параметров по току и напряжению согласно требованиям защищаемого оборудования. После этого в процессе тестового периода возможны ситуации, когда потребуется корректировка работы аппарата. Наиболее частыми проблемой становится самопроизвольное отключение прибора. Причиной такой ситуации в основном становится превышение допустимой для стабилизатора нагрузки.

Источник

Стабилизатор напряжения на транзисторах

Стабилизатор на одном стабилитроне

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы. Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – полупроводниковый прибор обладающий свойством стабилизации напряжения. В отличии от обычного диода работает в обратной полярности (на катод подается плюс), в режиме лавинного пробоя. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

Читайте также:  Среднее значение переменного напряжения это

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Конденсатор нужен для сглаживания пульсаций по напряжению, называется он фильтрующим. Резистор нужен для сглаживания пульсаций по току и называется он гасящим. Стабилитрон стабилизирует напряжение на нагрузке. Для нормальной работы данной схемы напряжение питания должно быть больше 40…50 %. Стабилитрон следует подобрать под нужное нам напряжение и ток.

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

Принцип работы стабилизатора на одном транзисторе

Цепочка из R1 и VT1 нам уже знакома из предыдущей схемы, это простейший стабилизатор, он задает стабилизированное напряжение на базе транзистора VT2. Транзистор в свою очередь выполняет функцию усилителя тока и является управляющим элементом в этой схеме. Например, при повышении входного напряжения, выходное напряжение будет стремится к возрастанию. Это приводит к понижению напряжения на эмиттерном переходе транзистора VT2, что приводит к его закрытию. При этом падение напряжения на участке эмиттер – коллектор возрастает на столько, что напряжение на стабилитроне уменьшается до исходного уровня. При понижении напряжения стабилизатор реагирует в обратном порядке.

Стабилизатор на транзисторах с защитой от КЗ

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

Как видим в данную схему добавлен транзистор V4, диоды V6 и V7, и параметрический стабилизатор состоящий из резистора R1, диодов V2, V3 оснащен переключателем S2.

Принцип работы защиты стабилизатора

Данная схема рассчитана на ток срабатывания от КЗ 250…300 мА, пока он не превышен, ток будет проходить через делитель напряжения состоящий из диода V7 и резистора R3. Путем подбора данного резистора можно регулировать порог срабатывания защиты. Диод V6 при этом будет закрыт и никакого влияния на работы оказывать не будет. При срабатывании защиты диод V7 закроется, а диод V6 откроется и зашунтирует подключений стабилитрон, при этом транзисторы V4 и V5 закроются. Ток на нагрузке упадет до 20…30 мА. Транзистор V5 следует устанавливать на теплоотвод.

Стабилизатор с регулируемым выходным напряжением

В ремонте или наладке электронных устройств необходимо иметь блок питания с регулируемым выходным напряжением. Принципиальная схема стабилизаторы с регулировкой по напряжению представлена ниже.

Принцип работы стабилизатора с регулировкой напряжения

Параметрический стабилизатор состоящий из R2 и V2 стабилизируют напряжение на переменном резисторе R3. Напряжение с этого резистора поступает на управляющий транзистор. Этот транзистор включен по схеме эмиттерного повторителя, нагрузкой которого является резистор R4. Напряжение с резистора R4 подается на регулирующий транзистор V4, нагрузкой которого уже выступает наше питаемое устройство. Регулировка напряжения осуществляется переменным резистором R3, если движок резистора находится в минимальном положении по схеме, то напряжения для открытия транзисторов V3 и V4 недостаточно и на выходе будет минимальное напряжение. При вращении движка, транзисторы начинают открываться, что увеличивает напряжение на нагрузке. При увеличении тока нагрузки, падение напряжения на резисторе R1 и лампа Н1 начинает загораться, при токе в 250 мА наблюдается тусклое свечение, а при токе в 500мА и выше яркое. Транзистор V4 следует устанавливать на теплоотвод. При повышенной нагрузке более 500 мА, следует как можно быстрее выключить блок питания, так как при длительной максимальной нагрузке выходят из строя диоды в выпрямительном мостике и транзистор V4.

Данные схемы при правильной сборке не нуждаются в наладке. Также их можно модернизировать на более большой ток и напряжения. Путем подбора радиоэлементов с нужными нам параметрами.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Источник

Регулируемый стабилизатор напряжения

С развитием электронной промышленности небывалую популярность приобрели различные регулируемые стабилизаторы напряжения. Если во времена СССР этот класс устройств был представлен громоздкими ЛАТР-ами, то сегодня с подобными задачами справляются скромных размеров микросхемы и компактные преобразователи.

Читайте также:  Что такое линейные регуляторы напряжения

Современный ЛАТР

Что такое стабилизатор напряжения с регулировкой

Суть и задачи устройства полностью раскрываются в его названии. Слово «стабилизатор» означает то, что этот прибор способен поддерживать на своих выходных клеммах неизменный уровень напряжения. Их, кстати, может быть больше, чем две. Слово «напряжение» указывает на то, с каким параметром работает устройство, ведь, помимо этого, существуют и регулируемые стабилизаторы тока, относящиеся к другому классу. Фраза «с регулировкой» означает, что выходной вольтаж может изменяться человекам или какими-либо внешними факторами.

Сразу стоит подметить, что стабилизаторы бывают разными по мощности, конструкции и назначению. Самые распространённые следующие:

  • ЛАТРы – из-за простоты и надёжности востребованы уже многие десятилетия;
  • стабилизированные источники питания, на подобие тех, что применяются для LED лент;
  • интегральные стабилизаторы, которые в основном монтируются на печатные платы.

Стабилизатор LM7805

Дополнительная информация. Для правильного питания аккумулятора смартфона применяются платы стабилизации. Они нужны, чтобы управлять током заряда. Собрать подобное устройство можно и самостоятельно на основе биполярных или полевых транзисторов.

ЛАТРы и последующая их эволюция

Лабораторные автотрансформаторы хороши своей простотой и неприхотливостью. Всё что нужно – подать этому устройству на вход переменное напряжение. Как правило, это обычные сетевые 220-230 вольт. Выходной потенциал снимается со вторичных клемм ЛАТРа. Он лежит в пределах от единиц вольт до 250-300 В. Из этого следует, что ЛАТР может выступать в роли повышающего узла, что также нередко бывает полезным.

В старых моделях регулировка осуществлялась вращением специальной рукоятки. Одновременно нужно было смотреть на измерительные приборы и уже по ним выставлять требуемое напряжение. Современные ЛАТРы оснащены ЖК экранами, удобными кнопками, «крутилками» и прочими прелестями 21 века.

Дополнительная информация. Необязательно, но желательно перед вращением регулятора ЛАТР-а отключить его от нагрузки, особенно, если она мощная. Так удастся избежать дуго,- и искрообразования на его подвижном контакте. В результате срок службы прибора заметно увеличится.

Технические характеристики стабилизаторов напряжения

При подборе стабилизатора следует учитывать его назначение. Исходя из него, можно определиться, прибор с какими характеристиками будет наиболее подходящим. Важнейшие параметры стабилизаторов таковы:

  1. диапазоны входных и выходных напряжений;
  2. максимально допустимый ток;
  3. предельная мощность;
  4. уровень пульсаций и шумов на выходе;
  5. КПД стабилизатора.

Первые 3 параметра при подборе являются наиболее важными. Не считаться с ними нельзя, ведь в противном случае стабилизатор долго не проработает. Характеристики 4 и 5 нужны для проведения более профессиональных ремонтов, разработок и экспериментов.

Функции приборов

Любой регулируемый стабилизатор напряжения, независимо от его мощности и рода тока, с которым он работает, должен поддерживать широкий диапазон входных напряжений. При этом выходное напряжение должно быть максимально неизменным и без критических искажений.

Диапазон входного напряжения стабилизатора

Входной вольтаж интегрального стабилизатора – это один из его важнейших параметров. При его превышении устройство, вероятнее всего, выйдет из строя. Особенно к этому параметру чувствительны неоригинальные стабилизаторы из Китая. В этом случае всё, казалось бы, просто и логично, однако проблема есть и с недостатком напряжения. Если вольтаж на входе будет меньше минимального, то проблем не избежать. Стабилизатор не запустится, и на его выходе будет либо 0 В, либо какое-то неадекватное значение.

В случае с блоками питания и подобными им устройствами при заниженном питающем напряжении будет срабатывать соответствующая защита (UVP). В результате стабилизатор будет периодически включаться и выключаться по несколько раз в секунду. Такой режим работы не считается допустимым.

ЛАТРы подобных проблем лишены. Они более терпимы к ненормальным режимам работы и критическим отклонениям входных параметров.

Системный контроль параметров

Особенность регулируемых стабилизаторов заключается в возможности управления их выходными параметрами, то есть человек при помощи рук может влиять на конечный вольтаж устройства. Такое применимо к мощным лабораторным автотрансформаторам и некоторым блокам питания (БП).

Стабилизированные БП имеют одну особенность, выгодно отличающую их от других приборов аналогичного назначения. В их схему может быть включено большое количество защит. Например, от:

  • пониженного и/или повышенного входного и/или выходного напряжения;
  • защита от перегрева;
  • от переполюсовки питания (в случае DC-DC конверторов);
  • защита по максимальному выходному и/или входному току.
Читайте также:  Схема преобразователя напряжения 220 380 вольт

Регулировка выходного напряжения

ЛАТР-ы относятся к управляемым стабилизаторам напряжения. Их регулировка осуществляется с помощью подвижного графитового контакта (ролика), который способен перемещаться по виткам трансформатора, тем самым изменяя его коэффициент.

Устройство ЛАТРа

Дополнительная информация. Плавное регулирование ручки ЛАТР-а позволяет добиться аналогичного изменения выходного напряжения. Подключив к такому прибору двигатель, можно постепенно изменять скорость его вращения.

В блоках питания светодиодных лент для этих целей предусмотрен подстроечный резистор. Его часто можно наблюдать близь выходных клемм источника. Этот резистор включен в цепь обратной связи по напряжению и влияет на режим работы БП. При этом выходное напряжение не зависит от потребляемого тока, т.е. мощности нагрузки.

Стабилизированный блок питания с регулировкой

В линейных интегральных стабилизаторах LM7805 и им подобных микросхемах контроль выходного вольтажа осуществляется с помощью встроенного источника опорного напряжения. Для их ручной регулировки необходимы дополнительные радиодетали (подстроечный резистор или потенциометр).

Особенности включения стабилизатора

Если говорить о ЛАТР-ах, то подключаются они проще других стабилизаторов. У прибора имеются две клеммы на входе и две на выходе. На ЛАТР подаётся заниженное/завышенное переменное напряжение. С него же снимается нужный вольтаж. При этом никакой полярности нет, т.к. прибор работает с переменным током.

В стабилизированных БП примерно так же. Имеется вход 220 вольт, на который можно подавать напряжение с некоторым отклонением. На выходе при этом всегда будет поддерживаться стабильное постоянное напряжение, установленное пользователем.

Микросхемы-стабилизаторы уже сложны. На примере самых распространённых LM78ХХ можно сказать, что у них имеется 3 вывода:

  1. вход нестабилизированного питания постоянного напряжения (Vin);
  2. общий вывод – так называемая «земля» (gnd);
  3. выход стабильного напряжения (Vout);

Выводы LM7805

Важно! Если микросхема будет эксплуатироваться на своих максимальных мощностях, то через неё будут протекать большие токи. Соответственно, она будет сильно перегреваться и может выйти из строя. Из-за этого у интегральных стабилизаторов, наподобие LM78ХХ в корпусе TO-220, предусмотрено отверстие для крепления на радиатор охлаждения.

Варианты использования в электронных схемах

В электронных схемах применяются именно линейные интегральные стабилизаторы. Объясняется это их миниатюрностью и тем, что их можно удобно впаять в любую плату.

В электронике стабилизаторы чаще всего выполняют две основные задачи. В одном случае их используют в качестве прецизионного источника питания. Он способен выдавать с минимальным отклонением именно тот вольтаж, который требуется. Вторая функция – стабилизатор как источник опорного напряжения (Vref).

Тестирование микросхемы

Независимо от роли, которую играет стабилизатор, он должен быть исправным. Для проверки этого электронного компонента потребуются его даташит, по возможности точный мультиметр и блок питания с регулировкой выходного напряжения. Саму деталь лучше выпаять из платы.

Тест проведен на примере LM7805. Из даташита видно, что максимальное входное напряжение (V1), которое можно подать на этот стабилизатор, составляет 35 В. При этом выходной вольтаж (V0) должен ровняться 5 вольт, а пиковый ток Ipk может достигать 2,2 ампер (не путать с максимальным действующим). Ниже описан более подробный тест. При входном напряжении от 8 до 20 В, выходное должно лежать в диапазоне от 4,85 до 5,15 В. Если тестируемый стабилизатор не удовлетворяет этим характеристикам, то он считается неисправным.

Фрагмент даташита LM7805

Настройка и ремонт

Ремонтом стабилизаторов микросхем никто не занимается по той причине, что это едва ли осуществимо технически, а сами детали стоят сущие копейки. В настройке такой прибор не нуждается, ведь он изначально создаётся под одно конкретное напряжение.

Блоки питания и различные преобразователи напряжения вполне поддаются ремонту. Их стоимость может лежать в пределах от единиц до тысяч долларов, по понятным причинам восстанавливают только дорогие модели.

ЛАТР – прибор не самый дешёвый, но устроен довольно просто. Его ремонт – это по большей части восстановление подгоревших контактов и протяжка различных креплений. В редких случаях, если ЛАТР всё-таки удастся сжечь, то придётся перемотать его обмотку.

Существует широкий выбор регулируемых стабилизаторов напряжения. Некоторые из них громоздкие и справляются с нагрузками в сотни ватт. Другие размером не больше 5 мм, легко помещаются в смартфонах. Понимание того, где, как и какой стабилизатор применить, позволяет использовать их максимально эффективно.

Видео

Источник

Adblock
detector