Меню

Составить баланс мощности проверить решение



Баланс мощностей

При решений электротехнических задач, часто нужно проверить правильность найденных значений. Для этого в науке ТОЭ, существует так называемый баланс мощностей.

Баланс мощностей – это выражение закона сохранения энергии, в электрической цепи. Определение баланса мощностей звучит так: сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками. То есть если источник ЭДС в цепи отдает 100 Вт, то приемники в этой цепи потребляют ровно такую же мощность.

Или

Проверим это соотношение на простом примере.

Для начала свернем схему и найдем эквивалентное сопротивление. R2 и R3 соединены параллельно.

Найдем по закону Ома ток источника и напряжение на R23, учитывая, что r1 и R23 соединены последовательно, следовательно, сила тока одинаковая.

Теперь проверим правильность с помощью баланса мощностей.

Небольшое различие в значениях связано с округлениями в ходе расчета.

С помощью баланса мощностей, можно проверить не только простую цепь, но и сложную. Давайте проверим сложную цепь из статьи метод контурных токов.

Как видите независимо от сложности цепи, баланс сошелся, и должен сойтись в любой цепи!

Источник

Расчет электрической цепи и лабораторные работы по электротехнике

Баланс мощностей

Для проверки правильности результатов расчета электрической схемы составляется баланс электрических мощностей. В соответствии с законом

сохранения энергии в любой отдельно взятой электрической цепи мощность, развиваемая источниками в этой цепи, равна мощности, расходуемой в приемниках энергии. При этом следует иметь в виду, что при определенных условиях некоторые источники, действующие в цепи, не генерируют, а, наоборот, потребляют энергию. Следовательно, суммарную мощность источников, действующих в цепи, находят в виде алгебраической суммы мощности отдельных источников. Со знаком “плюс” берется мощность источников, генерирующих энергию (рисунок 3.22, а, б), а со знаком “минус” – мощность источников, потребляющих энергию (рисунок 3.22, в, г). На рисунках буквой А обозначен активный двухполюсник, внутренняя схема которого представляет совокупность источников энергии и резисторов, соединенных между собой определенным образом.

Мощность источника напряжения равна произведению ЭДС E источника и проходящего по нему тока I (P = ЕI), а мощность источника тока определяется произведением напряжения UJ на его зажимах и генерируемого источником тока J (P = UJJ). На рисунке 3.22, а, б мощность источников берется с положительным знаком, а на рисунке 3.22, в, г – с отрицательным.

Таким образом, мощность источников, действующих в цепи, находят по формуле

(3.20)

В резисторах электрическая энергия необратимо превращается в тепловую. Мощность, потребляемая всеми резисторами в цепи, равна сумме мощностей каждого резистора:

Pнагр = (3.21)

Относительную ошибку вычислений находят по формуле

(3.22)

Составим баланс мощностей для примера 3.4. Найдем напряжение UJ на зажимах источника тока по второму закону Кирхгофа для контура b-c-d-b:

UJ = E5 – R5I5 + R3I3 = 118,325 В.

Из полученных в результате расчета значений токов следует, что энергию генерируют источники ЭДС E1, E4 и источник тока J, в то время как источник ЭДС E5 является ее потребителем. Таким образом, мощность, развиваемая источниками,

Pист = E1I1 + E4I4 – E5I5 +UJJ = 404,935 Вт.

Мощность, выделяемая в сопротивлениях резисторов (мощность нагрузки),

Pнагр = 404,92 Вт.

Относительная ошибка вычислений

Вывод: расчет токов схемы выполнен правильно, т. к. баланс мощностей выполняется.

В схеме можно предварительно произвести эквивалентные преобразования, позволяющие исключить из нее ветви с источниками токов и, следовательно, уменьшить число контуров.

В этом случае система контурных уравнений (3.19) может быть записана в матричной форме:

(3.23)

где ; ; ;

– квадратная матрица сопротивлений электрической цепи порядка n;

– матрица-столбец искомых контурных токов;

– матрица-столбец контурных ЭДС.

Решение матричного уравнения (3.23) находим в следующей форме:

. (3.24)

При расчете многоконтурных электрических цепей матричная форма записи позволяет использовать при решении системы уравнений ЭВМ.

Пример 3.5 Рассчитать токи в схеме на рисунке 3.23 с параметрами E1 = 12 В, E5 = 8 В, J = 2 A, r01 = 1 Ом, r05 = 1,2 Ом, R1 = 11 Ом, R2 = 8 Ом, R3 = 14 Ом, R4 = 5 Ом, R5 = 6,8 Ом, R6 = 6 Ом методом контурных токов. Построить потенциальную диаграмму для контура a-b-c-d-a.

Решение. Подключим источник тока J параллельно сопротивлениям R2 и R4 (рисунок 3.24, а), распределение токов в узлах a, b и c при этом останется прежним. Заменим параллельное соединение источников тока J и сопротивлений R2 и R4 эквивалентным последовательным соединением ЭДС Е2 = R2J = 16 В и Е4 = R4J = 10 В с соответствующими сопротивлениями R2 и R4 (рисунок 3.24, б).

В результате эквивалентных преобразований получим схему на рисунке 3.25. Токи в ветвях с сопротивлениями R2 и R4 этой схемы будут отличаться от токов в исходной схеме, поэтому обозначим их и .

Выберем независимые контуры и направим в них контурные токи I11, I22 и I33. Запишем систему уравнений относительно неизвестных контурных токов в матричной форме и найдем ее решение.

,

где R11 = R1 + r01 + R2 + R3 = 34 Ом;

R22 = R2 + R4 + r05 + R5 = 21 Ом;

R33 = R3 + R6 + r05 + R5 = 28 Ом;

R12 = R21 = – R2 = – 8 Ом;

R13 = R31 = R3 = 14 Ом;

R23 = R32 = r05 + R5 = 8 Ом;

E11 = E1 – E2 = – 4 В;

E22 = E2 + E4 – E5 = 18 В;

E33 = – E5 = – 8 В.

Решение системы линейных алгебраических уравнений выполним методом Крамера. Найдем определитель матрицы сопротивлений

1,012∙104 Ом3,

а также следующие определители:

Находим контурные токи:

Токи ветвей схемы 3.25:

I1 = I11 = 0,674 A; = – I11 + I22 = 0,842 A; I3 = – I11 – I33 = 0,382 A;

= I22 = 1,516 A; I5 = – I22 – I33 = – 0,46 A; I6 = – I33 = 1,056 A.

Вернемся к исходной схеме и определим токи во второй и четвертой ветвях по первому закону Кирхгофа:

I2 = I3 – I5 – J = – 1,158 А; I4 = I1 + I2 = – 0,484 А.

Проверим правильность результатов расчета по балансу электрических мощностей. Найдем напряжение UJ на зажимах источника тока:

UJ = – R2I2 – R4I4 = 11,684 В.

Истинные направления токов I2 и I4 противоположны предварительно выбранным.

Из проведенных расчетов следует, что источник ЭДС E1 и источник тока J функционируют в режиме генерирования энергии, в то время как источник ЭДС E5 ее потребляет.

Мощность источников Pист = E1I1 – E5I5 + UJJ = 27,776 Вт.

Мощность нагрузки

Pнагр = 27,777 Вт.

Построим потенциальную диаграмму, т. е. распределение потенциалов узлов, в том числе и устранимых m и n вдоль контура a-b-c-d-a (рисунок 3.26) в зависимости от сопротивлений участков, входящих в этот контур. Выделим из схемы 3.23 этот контур и укажем действительные направления токов в ветвях. Ток на любом участке схемы определяется не абсолютными значениями потенциалов точек, к которым этот участок присоединен, а их разностью. Следовательно, потенциал одной из точек схемы можно принять равным нулю. Примем, например, потенциал узла а равным нулю (φа = 0) и найдем потенциалы остальных точек контура:

φb = –R2I2 = – 9,264 В; φn = φb + R5I5 = – 6,136 В; φc = φn + E5 + r05I5 = 2,416 В;

φd = φc–R6I6 = – 3,92 В; φm= φd + E1– r01I1 = 7,406 В; φa = φm – R1I1 = – 0,008 В.

Потенциальная диаграмма представлена на рисунке 3.27.

Понятие проводимости приобретает особый смысл в том случае, если ветвь содержит активные и реактивные элементы. На ветви, изображенной на рис.2.22, определим ее активную и реактивную проводимости:

Рис.2.22. Участок цепи с активно-индуктивным сопротивлением

. 58(2.49)

Из векторной диаграммы (рис.2.21) можно выделить треугольник токов (рис. 2.23).

Рис.2.23. Векторный треугольник токов

Разделив стороны векторного треугольника токов на вектор напряжения, получим скалярный треугольник проводимостей (рис. 2.24).

Рис.2.24. Скалярный треугольник проводимостей

Источник

Баланс мощностей в электрической цепи

Возможно, для турбо-версии статьи у вас некорректно отображаются формулы. Для корректного отображения статьи посмотрите оригинальную версию.

Читайте также:  Измерение мощности газовых котлов

В программу расчёта электрических цепей добавлен функционал проверки баланса мощностей.

Из закона сохранения энергии следует, что в любой цепи соблюдается баланс мощностей. Сумма всех отдаваемых мощностей равна сумме всех потребляемых мощностей [1]:

где $ \underline_\textrm <ист>$ – комплексная мощность, отдаваемая источниками тока и напряжения электрической цепи; $ \underline_\textrm <пр>$ – комплексная мощность, потребляемая пассивными элементами электрической (резисторами, катушками индуктивности, конденсаторами).

Комплексная мощность, отдаваемая источником ЭДС, определяется по формуле:

$$ \tag <1>\underline_\textrm = \underline ⋅ \underline’, $$

где $ \underline $ – значение ЭДС; $ \underline’ $ – комплексно-сопряжённый ток, протекающий через источник ЭДС; знак ‘ обозначает сопряжённый комплекс.

Формула (1) справедлива для того случая, когда направление источника ЭДС совпадает с направлением протекающего через него тока (рис. 1). Если направление источника ЭДС не совпадает с направлением протекающего через него тока, то мощность, отдаваемая этим источником ЭДС, берётся c противоположным знаком.

Рис. 1. Положительные направления тока и источника ЭДС

Комплексная мощность, отдаваемая источником тока, определяется по формуле:

$$ \tag <2>\underline_\textrm = \underline_\textrm ⋅ \underline’, $$

где $ \underline_\textrm $ – напряжение на источнике тока; $ \underline’ $ – комплексно-сопряжённый ток источника тока. Формула (2) справедлива для случая, когда принятое направления тока совпадает с направлением источника тока, а направление напряжения соответствует рис. 2.

Рис. 2. Положительные направления тока и напряжения на источнике тока

Комплексная мощность, потребляемая электрической цепью, складывается из мощностей, потребляемых резисторами, катушками индуктивности и конденсаторами.

Комплексная мощность, потребляемая резистором, определяется по формуле

$$ \tag <3>\underline_\textrm = R ⋅ I^<2>, $$

где $ R $ – сопротивление резистора; $ I $ – абсолютное значение тока, протекающего через резистор (берётся модуль комплексного числа).

Комплексная мощность, потребляемая катушкой индуктивности, определяется по формуле

Читайте также:  Мощность феррита от сечения

$$ \tag <4>\underline_\textrm = jX_ ⋅ I^<2>, $$

где $ X_ $ – сопротивление катушки индуктивности; $ I $ – абсолютное значение тока, протекающего через катушку индуктивности (берётся модуль комплексного числа).

Комплексная мощность, потребляемая конденсатором, определяется по формуле

где $ X_ $ – сопротивление конденсатора; $ I $ – абсолютное значение тока, протекающего через конденсатор (берётся модуль комплексного числа).

Формулы (3)-(5) показывают, что мощность, потребляемая резисторами, является чисто активной, а мощность, потребляемая катушками индуктивности и конденсаторами, является чисто реактивной.

Источник