Меню

Схема регулятора вращения вентилятора 12 вольт



Автоматический регулятор оборотов кулера

Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема

Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Изготовление регулятора

Схему можно без труда собрать навесным монтажом, а можно изготовить печатную плату, как я и сделал. Для подключения проводов питания и самого вентилятора на плате предусмотрены клеммники, а терморезистор выводится на паре проводков и крепится к радиатору. Для большей теплопроводности прикрепить его нужно, используя термопасту. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса.

После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.

Читайте также:  Рено гранд сценик реле регулятор

Настройка

Теперь можно подключать к плате вентилятор и осторожно подавать питание, установив подстроечный резистор в минимальное положение (база VT1 подтянута к земле). Вентилятор при этом вращаться не должен. Затем, плавно поворачивая R2, нужно найти такой момент, когда вентилятор начнёт слегка вращаться на минимальных оборотах и повернуть подстроечник совсем чуть-чуть обратно, чтобы он перестал вращаться. Теперь можно проверять работу регулятора – достаточно приложить палец к терморезистору и вентилятор уже снова начнёт вращаться. Таким образом, когда температура радиатора равно комнатной, вентилятор не крутится, но стоит ей подняться хоть чуть-чуть, он сразу же начнёт охлаждать.

Источник

3 лучшие схемы регуляторов скорости вентиляторов

Рассмотрим ТОП-3 рабочих схемы регулятора скорости вращения вентилятора. Каждая схема не только проверена, но и отлично подойдёт для воплощения начинающими радиолюбителями. К каждой схеме прилагается список необходимых компонентов для монтажа своими руками и пошаговые рекомендации.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Плата регулятора скорости вентилятора:

Фото готового регулятора скорости вентилятора:

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

  • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) — Д9Б.
  • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).
Читайте также:  Фитозонт универсальный 1мл амп регулятор роста август х200

Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Источник

Простой регулятор скорости вращения вентилятора 12В

Предлагаемый регулятор скорости вращения вентилятора можно расширить для работы нескольких кулеров независимо друг от друга. Преимуществами схемы являются простота конструкции, приемлемая стоимость и работа в режиме ШИМ, поэтому можно использовать небольшие переключающие транзисторы. В оригинале стоит биполярный, но и полевые Мосфет сюда отлично подходят, включенные по такому принципу схемотехники.

Схема блока управления вентиляторами охлаждения 12 В

Верхняя часть принципиальной схемы представляет собой классический генератор пилообразных частот. Частота с заданными значениями элементов R4, C1 составляет около 220 Гц — её можно выбирать в широком диапазоне. Резисторы R1, R2 и R3 рассчитаны примерно на 50% скважности при 20 C, и 100% при 55 C. Питается стабилизированным источником питания 12 В.

Сигнал генератора сравнивается вторым усилителем (работающим в качестве компаратора) с выходным напряжением датчика LM35, который должен быть термически связан с охлаждаемым элементом (радиатором).

  • Когда напряжение пилы ниже, чем напряжение от LM35, исполнительный транзистор проводит ток на кулер.
  • Когда пила превышает значение напряжения от LM35 — транзистор отключается.
Читайте также:  Codesys овен пид регулятора

Таким простым способом получается нужная форма сигнала ШИМ для управления вентилятором, пропорциональная текущей температуре охлаждаемого элемента — чем выше напряжение от LM35 (т.е. чем выше контролируемая температура), тем больше коэффициент заполнения напряжения питания вентилятора, и он соответственно вращается быстрее.

Добавляя дополнительные блоки контроллера (нижняя часть схемы), можно управлять последующими вентиляторами. Таким образом, получается управлять одним вентилятором от одной ОУ LM358, двумя вентиляторами от двух LM358 или одним LM324, тремя также от одной микросхемы LM324 и так далее.

Плата, сделанная на одной LM358, представляет собой компактный кубик для подключения к проводам вентилятора. Печатная плата приводится далее.

Транзисторы BC327 должны выдерживать токи нагрузки 500 мА, может потребоваться заменить R5 и R6 на меньшие, в зависимости от коэффициента усиления транзистора. Для управления вентиляторами большего размера и тока выходная цепь должна быть перестроена, например, под силовой транзистор MOSFET с каналом P-типа — для такого транзистора резистор R6 не нужен, а R5 можно заменить перемычкой. Также должны увеличить значение C2. Слишком высокая его ёмкость приведет к работе на полной скорости вентилятора независимо от температуры. Также стоит помнить, что вентилятор и радиатор должны иметь запас рассеивания тепла по отношению к рассеиваемой мощности. Слишком маленький вентилятор и радиатор приведут к тому, что съхема будет работать на 100% постоянно.

Чип LM35 является датчиком тепла в корпусе TO92 (как и BC547), который выполняет функции преобразователя температуры в напряжение. Изменяя напряжение на инвертирующем входе нижнего усилителя, заполнение скважности тоже изменяется, потому что оно работает в схеме компаратора напряжения. Схема великолепна своей простотой, но она будет более полезна в случае больших обычных двигателей, чем компьютерных вентиляторов, предназначенных для питания от постоянного тока, тогда как здесь импульсный.

LM35 измеряет температуру давая на выходе 10 мВ для каждого положительного градуса Цельсия — то есть для 20 градусов он дает 200 мВ. Если хотите использовать регулятор для обычных щеточных (коллекторных) двигателей, С2 следует заменить на соответствующий диод (гасим обратный ток).

Усилитель мощности звука на транзисторах, из радиоконструктора DJ200. Проверка работы схемы.

Тонкомпенсированный регулятор громкости с адаптацией к регулятору тембра — теория и практика.

Увеличение мощности интегральных усилителей транзисторами. Рассматривается на примере схем LM3886 и TDA7294.

Источник