Меню

Схема регулировки напряжения по первичной обмотке трансформатора схема



Зарядное с управлением по первичной обмотке трансформатора

Принцип управления током вторичной обмотки трансформатора, с помощью регулирования первичного тока — не новый. Тем не менее, хочется поделиться опытом применения подобной схемы.

Огромное достоинство схемы в том, что происходит регулировка малых токов, которые имеют место быть в цепи питания первичной обмотки. Соответственно, стоимость силовых элементов намного ниже.

В конце статьи — мой ролик на YouTube о применении подобной схемы на нагрузочном трансформаторе.

Тот же тиристор КУ202 стоит всего лишь 50 рублей. Если бы применялась схема с тиристорным управлением вторичного тока, пришлось бы раскошелиться на Т-122, стоимость которого уже 250 рублей . И это при условии, что ток во вторичке не будет превышать 20-25 А.

А так… Дешёвые КД 202 в диодном мосту, да КУ 202. Причём их даже не нужно на радиаторы ставить. Токи-то маленькие. Остальное — мелочь. Не в счёт!

Диоды на вторичке — это уже от ваших потребностей. Если не собираетесь превышать нагрузку в 10А, то пойдут те, что в схеме указаны. Если же нужно что-то мощнее — магазин вам в помощь!

Однако стоит помнить о том, что все элементы управления первичной обмотки находятся под сетевым напряжением 220В и прикосновение к ним опасно для жизни. Поэтому нужно уделить особое внимание размещению всех элементов — не допускать их контакта с металлическим корпусом устройства.

Переменный резистор должен быть закреплён на диэлектрической поверхности панели, а рукоятка регулировки, сделана из пластика!

Зарядное с управлением по первичной обмотке трансформатора

Ниже приведены две осциллограммы, снятые на вторичной обмотке: при положении переменного резистора близком к минимуму и максимуму.

Зарядное с управлением по первичной обмотке трансформатора

Зарядное с управлением по первичной обмотке трансформатора

Несколько лет назад, на основе подобной схемы, я сделал нагрузочный трансформатор с регулировкой по первичке.

Схема тогда немного отличалась от приведённой выше. Если вас интересует мой отзыв «Какая схема лучше: в этой статье или в моём ролике на YouTube?», так я вам скажу, что эта схема мне больше понравилась — стабильнее работает.

Тот нагрузочник я использовал (и до сих пор использую) для проверки автоматических выключателей. Нагрузочник способен выдавать более 100 Ампер на вторичке. Но в этом режиме, я его использую кратковременно (до 10 секунд), т.к. сечение провода вторички — 16 мм2.

В длительном же режиме, без особых перегрузок он стабильно держит токи до 60А. Таким образом, я проверяю срабатывание тепловой защиты автоматов. Соответствие 1,2 Iн.

Источник

Особенности и управление зарядным устройством с регулировкой по первичной обмотке трансформатора

В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается.

Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов – зарядное устройство с регулировкой по первичной обмотке трансформатора.

Управление трансформатором по первичной обмотке

Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя. Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров.

Зарядное устройство с регулировкой по первичной обмотке трансформатора схема

Особенности регуляторов для первички трансформаторов

Ток зарядки батареи составляет 10% ее емкости. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А. Напряжение заряда при работе автомобиля 14,5В. Учитывая необходимый запас, зарядное устройства должно быть способно выдать 10А при напряжении 16В.

Запас напряжения необходим для регулировки и ограничения зарядного тока.

В разных моделях аппаратов она производится разными способами:

  • Добавочными сопротивлениями. Включаются после диодного моста. Самая простая конструкция, но имеющая самые большие размеры.
  • Транзисторами. Высокая точность регулировки, но самая сложная схема, требующая хорошего охлаждения силовых транзисторов.
  • Тиристорное управление. Простые схемы. Регулировка осуществляется тиристорным ключем в цепи первичной обмотки или тиристорами, установленными вместо диодов в выпрямительный мост.
Читайте также:  Проверочный расчет зубчатой передачи по контактным напряжениям

Зарядное устройство с регулировкой по первичной обмотке трансформатора подробная схема

Схема и назначение тиристорного регулятора напряжения для трансформатора

Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.

Модели для зарядки аккумуляторов

Зарядные устройства делятся на три группы:

  • Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
  • Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
  • Пуско-зарядные. Могут выполнять обе функции.

Зарядное устройство с регулировкой по первичной обмотке понижающего трансформатора Т1

Принцип действия тиристорного регулятора

Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.

Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз. Для бытовой сети это 308В.

схема тиристорного регулятора

Разновидности и технические характеристики тиристорного регулятора

Из-за того, что тиристор пропускает через себя напряжение только одной полярности, его нелзя использовать для управления трансформатором без дополнительных элементов:

    Включить тиристор в диодный мост из 4 диодов на вывода “+” и “-“. Вывода “

” подключаются в разрыв цепи вместо выключателя или последовательно с ним. Диодный мост выпрямляет напряжение и на тиристор подается питание только одной полярности.

  • Использовать два тиристора, включенные встречно-параллельно и для управления через переменный резистор соединяются управляющие вывода. Каждый из элементов открывается при своей полярности, а оба вместе управляют напряжением на нагрузке.
  • тиристорный регулятор

    Открытие тиристора происходит при прохождении тока больше определенной величины и есть два способа управления углом открывания:

    • Переменным сопротивлением, включенным между анодом и управляющим электродом. В течении первой половины полуволны напряжение и ток управления растут и при достижении его определенной величины, зависящей от марки элемента. Недостаток этой схемы в ограниченном диапазоне регулировки 110-220В, но этого достаточно для управления трансформатором зарядного устройства.
    • Управление импульсами, которые подает отдельная схема на управляющий электрод в определенный момент полуволны синусоиды.
      Допустимый ток и напряжение тиристорного регулятора зависят в первую очередь от установленных тиристоров. Самые распространенные – тиристоры серии КУ 202, но в некоторых случаях допускается применение других элементов:
    • КУ 202Н – 400В, 30А. Крепятся на резьбе М6. При регулировке первичной обмотки, ток которой менее 1А, используются без радиаторов.
    • КУ 201л – 300В, 30А, крепление- резьба М6. Допускается использовать в первичной обмотке.
    • КУ 201а – 25В, 30А, крепление – резьба М6. Можно использовать только с радиаторами при регулировке после трансформатора.
    • КУ 101г – 80В, 1А. Похож на транзистор. В силовых цепях зарядных устройствах не используются, только в схемах управления.
    • КУ 104а – 6В, 3А. Так же в силовых цепях не применяются.

    тиристорный регулятор ТС122

    Что представляет собой симистор

    У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.

    Читайте также:  Как проверить напряжение дросселя

    Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.

    Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
    Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.

    Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.

    Совет! Для регулировки симистором можно использовать диммер от лампы накаливания. Для этого он включается между анодом и управляющим электродом силового симистора.

    Симистор

    Другие простые варианты регулировки напряжения в первичке

    Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:

    • Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
    • Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
    • Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.

    Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.

    Источник

    Регулирование напряжения трансформатора

    Проблема состоит в том, что напряжение в электрической сети меняется в зависимости от ее нагруженности, в то время как для адекватной работы большинства потребителей электроэнергии необходимым условием является нахождение питающего напряжения в определенном диапазоне, чтобы оно не было бы выше или ниже определенных приемлемых границ.

    Поэтому и нужны какие-то способы подстройки, регулирования, корректировки сетевого напряжения. Один из лучших способов — это изменение по мере надобности коэффициента трансформации путем уменьшения или увеличения числа витков в первичной или во вторичной обмотке трансформатора, в соответствии с известной формулой: U1/U2 = N1/N2.

    Силовой трансформатор

    Для регулировки напряжения на вторичных обмотках трансформаторов, с целью поддержания у потребителей правильной величины напряжения, — у некоторых трансформаторов предусмотрена возможность изменять соотношение витков, то есть корректировать таким образом в ту или иную сторону коэффициент трансформации.

    Подавляющее большинство современных силовых трансформаторов оснащено специальными устройствами, позволяющими выполнять регулировку коэффициента трансформации, то есть добавлять или убавлять витки в обмотках.

    Такая регулировка может выполняться либо прямо под нагрузкой, либо только тогда, когда трансформатор заземлен и полностью обесточен. В зависимости от значимости объекта, и от того, насколько часто необходимы данные регулировки, — встречаются более или менее сложные системы переключения витков в обмотках: осуществляющие ПБВ — «переключение без возбуждения» или РПН — «регулирование под нагрузкой». В обеих случаях обмотки трансформатора имеют ответвления, между которыми и происходит переключение.

    Устройство силового трансформатора

    Переключение без возбуждения

    Регулирование напряжения трансформатора

    Переключение без возбуждения выполняют от сезона — к сезону, это плановые сезонные переключения витков, когда трансформатор выводится из эксплуатации, что конечно не получилось бы делать часто. Коэффициент трансформации изменяют, делают больше или меньше в пределах 5%.

    На мощных трансформаторах переключение выполняется с помощью четырех ответвлений, на маломощных — при помощи всего двух. Данный тип переключения сопряжен с прерыванием электроснабжения потребителей, поэтому и выполняется он достаточно редко.

    Зачастую ответвления сделаны на стороне высшего напряжения, где витков больше и корректировка получается более точной, к тому же ток там меньше, переключатель выходит компактнее. Изменение магнитного потока в момент такого переключения витков на понижающем трансформаторе очень незначительно.

    Читайте также:  Контроль изоляции трансформаторов под рабочим напряжением

    Если требуется повысить напряжение на стороне низшего напряжения понижающего трансформатора, то витков на первичной обмотке убавляют, если требуется понизить — прибавляют. Если же регулировка происходит на стороне нагрузки, то для повышения напряжения витков на вторичной обмотке прибавляют, а для понижения — убавляют. Переключатель, применяемый на обесточенном трансформаторе, называют в просторечии анцапфой.

    Место контакта, хотя и выполнено подпружиненным, со временем оно подвергается медленному окислению, что приводит к росту сопротивления и к перегреву. Чтобы этого вредного накопительного эффекта не происходило, чтобы газовая защита не срабатывала из-за разложения масла под действием излишнего нагрева, переключатель регулярно обслуживают: дважды в год проверяют правильность установки коэффициента трансформации, переключая при этом анцапфу во все положения, дабы убрать с мест контактов оксидную пленку, прежде чем окончательно установить требуемый коэффициент трансформации.

    Также измеряют сопротивление обмоток постоянному току, чтобы убедиться в качестве контакта. Эту процедуру выполняют и для трансформаторов, которые долго не эксплуатировались, прежде чем начинать их использовать.

    Регулирование под нагрузкой

    Оперативные переключения осуществляются автоматически либо в вручную, прямо под нагрузкой, там где в разное время суток напряжение сильно изменяется. Мощные и маломощные трансформаторы, в зависимости от напряжения, имеют РПН разных диапазонов — от 10 до 16% с шагом в 1,5% на стороне высшего напряжения, — там, где ток меньше.

    Здесь, конечно, есть некоторые сложности: просто рвать цепь на мощном трансформаторе нельзя, т. к. в этом случае возникнет дуга и трансформатор просто выйдет из строя; кратковременно витки замыкаются между собой накоротко; необходимы устройства ограничения тока.

    Токоограничительные реакторы в системах РПН

    Регулирование под нагрузкой с ограничением тока позволяет осуществить система с двумя контакторами и двухобмоточным реактором.

    К двум обмоткам реактора подключено по контактору, которые в обычном рабочем режиме трансформатора сомкнуты, примыкая к одному и тому же контакту на выводе обмотки. Рабочий ток проходит через обмотку трансформатора, затем параллельно через два контактора и через две части реактора.

    В процессе переключения один из контакторов переводится на другой вывод обмотки трансформатора (назовем его «вывод 2»), при этом часть обмотки трансформатора оказывается накоротко шунтирована, а рабочий ток ограничивается реактором. Затем второй контакт реактора переводится на «вывод 2».

    Процесс регулирования завершен. Переключатель с реактором имеет небольшие потери в средней точке, так как ток нагрузки наложен на конвекционный ток двух переключателей, и реактор может все время находится в цепи.

    Токоограничительные резисторы в системах РПН

    Альтернатива реактору — триггерный пружинный контактор, в котором происходит последовательно 4 быстрых переключения с использованием промежуточных положений, когда ток ограничивается резисторами. В рабочем положении ток идет через шунтирующий контакт К4.

    Когда требуется произвести переключение цепи из положения II в положение III (в данном случае — с меньшим количеством витков), — избиратель переводится с контакта I на контакт III, затем параллельно замкнутому контактору К4 подключается резистор R2 через контактор К3, затем контактор К4 размыкается, и теперь ток в цепи ограничен только резистором R2.

    Следующим шагом замыкается контактор К2, и часть тока устремляется также через резистор R1. Контактор К3 размыкается, отсоединяя резистор R2, замыкается шунтирующий контакт К1. Переключение завершено.

    Если у переключателя с реактором реактивный ток прервать трудно, и поэтому он используется чаще на стороне низкого напряжения с большими токами, то быстродействующий переключатель с резисторами успешно используется на стороне высокого напряжения с относительно малыми токами.

    Источник