Меню

Регулятор для тена схема



Стабилизированный регулятор мощности ТЭНа в 3-х фазной сети

lospartos Кандидат наук Солнечный 437 270

Посл. ред. 06 Марта 15, 23:12 от lospartos

lospartos Кандидат наук Солнечный 437 270

Посл. ред. 08 Янв. 16, 18:47 от lospartos

lospartos Кандидат наук Солнечный 437 270

Некоторые мысли перенесу из темы Доступная автоматика на Ардуино Мега 2560 соседнего раздела, чтобы было что критиковать.
В этом разделе уже есть похожая тема Стабилизированный регулятор мощности с внешним управлением, правда там не идет речь о трехфазном питании и разработка вроде как будет не на Ардуино. Не скрою, что я ждал, когда в этой теме разработают то, что мне нужно Стабилизированный регулятор мощности ТЭНа в 3-х фазной сети. Приборы и электр(он)ика. .
Начал работу над автоматикой, правда архитектуру такого контроллера вижу немного по-другому. Планирую отдельный силовой модуль с отдельными измерителями напряжения и своими триаками в каждой фазе. За основу будет взят алгоритм, разработанный msg31. Цикл будет также начинаться после перехода «нуля» на одной фазе. Расчет действующих значений напряжения и текущая мощность в каждой фазе, расчет разности измеренного и заданного значения мощности, задержка времени открытия симистора на каждой из этих фаз и открытие будут выполняться поочередно, через первую и вторую трети полупериода. За это все будет отвечать маленькая Ардуино Нано.

Наверное, все это можно поручить и одной Ардуино Мега, конструкция контроллера на которой прекрасно себя зарекомендовала, но я хочу умышленно ее освободить от этой задачи, освободив ее память для полной реализации других «хотелок» — голосовое сопровождение, GSM сигнализация, Wi-Fi или LAN, библиотеки для загрузки рецептов и технологических процессов, шилды TFT модуля или Gameduino и т.д.

Возможно, у модуля будет свое сервисное меню, где можно будеть задать сопротивление ТЭНов на фазах, тогда можно будет считывать и задавать показания в Ваттах.

Существующую «печатку» для автоматики переделывать не придется , просто нужно сделать еще одну плату с 2 трансформаторами и узлами контроля напряжения и 2 триаками на оставшиеся фазы. Все триаки можно установить на один радиатор, охлаждаемый одним кулером.

Можно запитать мозги (контроллеры) отдельно от силовой части через ИБП (источник бесперебойного питания): прошел сбой — автоматика даже и не почувствует, ТЭНы на секунду обесточатся, клапаны на секунду упадут, потом поднимутся снова а ТЭНЫ опять закипят.
Если напруга не появилась через какое-то время — то автоматика сама остановится, вышлет СМС, заорет компьютерным голосом и т.д.
Есть еще вариант: запоминать состояние требуемых параметров каждые 5 мин в EEPROM. Произошел сбой — система вернулась на туже стадию как до сбоя и продолжает работать, если сбой длительный то остановка.
Чтобы было что обсуждать, скидываю примерную схему регулятора.

Читайте также:  4757200080 регулятор тормозных сил аналоги

Источник

Простой регулятор мощности 3,5 кВт

Источник: elektrouzel.ru

Часто возникает необходимость регулировать мощность электрического тока. Например, что бы убавить напряжение электролампы и тем самым продлить ей срок службы или плавно менять частоту вращения электродвигателя, так же не лишним будет регулировка температуры жала паяльника и т.д. и т.п. Продолжать можно долго. Выход, конечно, есть, это может быть балластный резистор, ЛАТР, балластный конденсатор, но гораздо более эффективен, на мой взгляд, симисторный регулятор. В энергопотребителях не слишком критичных к форме питающего напряжения это наилучший выбор.

Сразу скажу, что я не большой специалист в данном вопросе, поэтому воспользовавшись интернетом, я был неприятно поражён сложными схемами управления симисторов. Предлагаемые схемы содержат слишком много деталей и, по-моему, устарели. Скажем, зачем городить схемы на транзисторах или микросхемах, когда существуют дешёвые и надёжные динисторы. Допустим симметричный (двунаправленный), динистор DB3 стоит в моём уральском городке всего три рубля. При сегодняшних ценах это даже смешно. А преимуществ, по сравнению с транзисторными схемами, где транзисторы работают в режиме обратимого пробоя (лавинообразно отпирающаяся транзисторная схема), много. Я уже не говорю о микросхемах. Для простого регулятора собирать подобные схемы невыгодно ни в плане экономии средств, ни в плане экономии времени, да и заморачиваться лишний раз не охота. Предлагаемая схема проста, надёжна и доступна для повторения. Собрать её сможет даже человек, не обладающий элементарными базовыми знаниями в электронике.

Современная элементная база позволяет собрать такую схему буквально из нескольких деталей (ушло несколько вечеров, причем львиную часть времени потратил на корпус и слесарку)! Привожу переднюю панель и фото самого регулятора. В продаже такой стоит более 100 баксов. А промышленный прибор легко переваливает за 400 баксов!

Читайте также:  Газовые регуляторы давления прямого действия

Он может пригодиться для регулировки освещения ламп накаливания, регулировки температуры ТЭНов, фенов, тепловых пушек, но не годится для работы на индуктивную ( трансформатор, асинхронный двигатель) или емкостную нагрузку. Симистор моментально выходит из строя.

На всякий случай поясню назначение деталей. Т1 – это симистор, в моём случае я использовал КУ 208, хотя возможно подключить и импортные симисторы (триаки) ВТА, ВТВ, ВТ. Элемент схемы Т – это и есть вышеупомянутый симметричный динистор (диак) импортного производства DB 3 (можно DB 4). По размеру он очень мал, что делает монтаж его очень удобным, я например, в некоторых случаях припаивал его непосредственно к управляющему выводу симистора. Выглядит он так:

Резистор 510.Оm – ограничивает максимальное напряжение на конденсатор 0,1 mkF, то есть если движок переменного резистора поставить в положение 0.Оm, то сопротивление цепи всё равно будет 510.Оm

Справа на схеме резистор на 20 kOm и конденсатор 0.22mkF именуемая RC цепью. RC цепочка, это своеобразная защита симистора от выбросов напряжения при работе на индуктивную нагрузку. То есть если Ваша схема будет регулировать активную нагрузку (лампочка, паяльник, ТЭН и т.д.), то R3 и C можно исключить из схемы, а это делает схему до смешного простой.

Итак, конденсатор 0,1mkF заряжается через резисторы 510.Om и переменный резистор 420kOm, после того, как напряжение на конденсаторе достигнет напряжения открывания динистора DB 3, динистор формирует импульс, открывающий симистор, после чего, при проходе синусоиды, симистор закрывается. Частота открывания-закрывания симистора зависит от напряжения на конденсаторе 0.1 mkF, которое, в свою очередь, зависит от сопротивления переменного резистора. Таким образом, прерывая ток (с большой частотой) схема регулирует мощность в нагрузке. Допустим, если подключить электролампу через диод, мы заставим работать её «в полнакала» и продлим её жизнь, однако не получиться регулировать яркость, да и неприятного мерцания не избежать. Этого недостатка нет в симисторных схемах, так как частота переключения сисмистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать своеобразное «пение», это частота с которой симистор подключает нагрузку к цепи.

Скажу для тех, кто не знает: электродрели прочий электроинструмент с регулировкой вращения так же использует симисторные схемы. Правда, двигатели в вышеперечисленном коллекторные. Но данная схема была испытана и с асинхронным двигателем 220 V(вытяжка в мастерской) и результат был отличный.

Читайте также:  Реле регулятор уаз буханка карбюратор

Источник

Схема регулятора мощности на симисторе 3,5 кВт

Если вы ищите схему простого регулятора мощности то эта схема вам обязательно пригодится. Она достаточно простая, мощность нагрузки составляет 3,5 кВт, с её помощью можно регулировать освещение, нагревательные тэны и тому подобное.

Единственный минус данной схемы, это то что подключить к ней индукционную нагрузку не получится, так как симистор выходит из строя!

Схема регулятора мощности

* Симистор Т1 можно взять BTB16-600BW или подобный (КУ 208 ил ВТА, ВТ).
* Динистор Т — DB3 или DB4

* Конденсатор 0,1мкФ керамический

Резистор R2 510Ом ограничивает максимальное напряжение на конденсатор 0,1 мкФ, если поставить движок регулятора в положение 0Ом, то сопротивление цепи всё равно будет 510Ом

Заряжается он через резисторы R2 510Ом и переменный резистор R1 420кОм, после того, как напряжение на конденсаторе достигнет напряжения открывания динистора DB3, динистор формирует импульс, открывающий симистор, после чего, при проходе синусоиды, симистор закрывается. Частота открывания-закрывания симистора зависит от напряжения на конденсаторе 0.1мкФ, которое, в свою очередь, зависит от сопротивления переменного резистора. Таким образом, прерывая ток (с большой частотой) схема регулирует мощность в нагрузке. Допустим, если подключить электролампу через диод, мы заставим работать её «в пол накала» и продлим ей срок службы, однако не получиться регулировать яркость, да и неприятного мерцания не избежать. В симисторных схемах этого недостатка нет, так как частота переключения симистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать что-то вроде пение, это будет частота с которой симистор подключает нагрузку к цепи.

Вы сами себе противоречите, сначала пишете: подключить к ней индукционную нагрузку не получится, так как симистор выходит из строя! А потом: При работе на инду… Читать ещё

В симисторных схемах этого недостатка нет, так как частота переключения симистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. Ров… Читать ещё

Источник