Меню

Питание компьютера постоянным напряжением



Питание компьютера постоянным напряжением

Прошивка BIOS материнских плат от ASUS

uTorrent (торрент-клиент)

Родительский контроль над компьютером. Уберегаем детей от нежелательной информации

Безвозвратное удаление файлов с жёсткого диска

Удаление баннеров — вымогателей

Обновление прошивки роутеров wi-fi

Блок питания компьютера, его разъёмы и напряжения

Материнская плата (системная плата)

Прошивка BIOS материнских плат от FOXCONN

Единый принцип настройки роутеров wi-fi

Блок питания компьютера, его разъёмы и напряжения

Блок питания — «сердце» электроснабжения компонентов компьютера. Он преобразует входящее переменное напряжение в постоянный ток напряжением +3,3 В, +5 В, +12 В.

1. Блок питания компьютера, его разъёмы и напряжения
2. Расчёт мощности
3. Основные характеристики блоков питания

Блок питания компьютера, его разъёмы и напряжения

Компоненты компьютера используют следующие напряжения:

+3,3В — Материнская плата, модули памяти, платы PCI, AGP, PCI-E, контроллеры

+5В — Дисковые накопители, приводы, PCI, AGP, ISA

+12В — Приводы, карты AGP, PCI-E

Текстовый режим редактора

Как видно одни и те же компоненты могут использовать разные напряжения.

Функция PS_ON позволяет выключить и включить блок питания программно. Эта функция выключает блок питания когда операционная система завершит свою работу.

Сигнал Power_Good. При включении компьютера блок питания проводит самотестирование. И если выходные напряжения питания в норме он посылает сигнал на материнскую плату в чип управления питанием процессора. Если он не получит такой сигнал, система не запустится.

Бывает так что на блоке питания не хватает необходимых разъёмов. Выйти из положения можно, применяя различные переходники и разветвители:

Текстовый режим редактора

Расчёт мощности

Мощности на выходе по каждой линии обычно написаны на наклейке блока питания и расчитываются по формуле:

Ватты (Вт) = Вольты (В) х Амперы (А)

Тем самым сложив все мощности по каждой линии получим общую мощность блока питания.

Текстовый режим редактора

Однако, часто выходная мощность не соответствует заявленной. Лучше брать немного более мощный блок, чтобы компенсировать возможную нехватку мощности.

Предпочтение думаю лучше отдавать проверенным брендам, однако не факт что блок будет качественным. Проверить можно только одним способом — вскрыть его. Должны быть массивные радиаторы, входные конденсаторы большой ёмкости, качественный трансформатор, должны быть распаяны все детали

Текстовый режим редактора

Основные характеристики блоков питания

Блоки питания не могут работать без нагрузки. При его проверки, к нему необходимо подключить что-нибудь. Иначе он может сгореть или, при наличии защиты, он отключится.

Запустить его можно закорачиванием двух проводков на основном разъёме ATX, зелёного и любого чёрного.

Текстовый режим редактора

  • Наработка на отказ. Примерно должна быть более 100000 часов
  • Входной диапазон напряжений (американский (120В) или европейский (220В)). Возможно присутствие переключателя режимов работы или автоматическое определение.
  • Время отключения блока питания при кратковременном отключении электричества. 15-30мс является стандартом, но чем больше тем лучше. Тем самым при пропадании электричества, у Вас система останется в рабочем состоянии, а не уйдёт в перезагрузку
  • Стабилизация напряжения на выходах при включении устройства (привода, жёсткого диска). Так как на неиспользуемое устройство подаётся пониженное напряжение
  • Отключение линии при превышении на ней напряжения к устройству
  • Максимальная нагрузка на линию. По этому показателю можно определить сколько устройств можно подключить к одной линии.
  • Стабилизация напряжения на выводах линий при изменении входящего напряжения.

    Добавлено: 5.5.2015 • : 41255

    Источник

    Как работает блок питания компьютера

    Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме.

    Линейные блоки питания

    Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.

    Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).

    Импульсные блоки питания

    Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.

    Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.

    Читайте также:  Как проверить напряжение генератора мультиметром не снимая

    В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.

    Так выглядит плата вживую:

    Фильтр

    Фильтр в блоке питания двунаправленный: он поглощает разного рода помехи: как созданные самим БП, так и приходящие из сети. В самых бюджетных БП предприимчивые китайцы вместо дросселей распаивали перемычки (или, как их называют ремонтники, «пофигисторы»), а конденсаторы не ставили вообще. Чем это плохо: помехи будут влиять на другую аппаратуру, подключенную к данной сети, а напряжение на выходе получится с «мусором». Сейчас таких блоков уже немного. Встречается также экономия на размерах: фильтр как бы есть, но работать он будет кое-как.

    Фильтр работает эффективнее, когда он находится как можно ближе к источнику помех. Поэтому часть фильтра зачастую располагают прямо на сетевой розетке.

    На картинке изображен фильтр в минимальной комплектации. F1 — предохранитель, VDR1 — варистор, N1 — термистор, Х2 — Х-конденсатор, Y1 — Y-конденсаторы, L1 — синфазный дроссель. Резистор R1 служит для разряда конденсатора Х2.

    Еще одна опасная для жизни пользователей экономия — когда вместо специальных Х- и Y-конденсаторов ставят обычные. Впрочем, встречается она редко. Автор видел такое всего один раз и очень давно. Экономия очень незначительна, а риск для пользователей очень велик, так как, например, Y-конденсаторы подключаются одной «ногой» на фазу, а другой — на корпус. В случае пробоя конденсатора можно получить опасное для жизни напряжение на корпусе.

    Корректор коэффициента мощности

    Не будем вдаваться в подробности, поскольку статьи на эту тему уже были: раз и два . Скажем только, что корректор коэффициента мощности должен быть во всех компьютерных БП, желательно активного типа (A-PFC).

    Плюсы корректора:
    1) Снижается нагрузка на сеть.
    2) Повышенный диапазон входного напряжения (чаще всего, но не всегда).
    3) Улучшение работы инвертора.

    Минусы:
    1) Увеличивается сложность конструкции, соответственно, снижается надежность.
    2) Возможны проблемы при работе с UPS.

    Преобразователь

    Обычно используется мостовая или полумостовая схема. Чаще всего встречается полумост. На картинке ниже он изображен в упрощенном виде.

    Как видно по схеме, транзисторы открываются поочередно с небольшой задержкой, чтобы не случилось ситуации, когда оба окажутся открыты. В таком случае получаем на первичной обмотке переменный ток высокой частоты, а на вторичной — уже пониженный до нужной величины.

    В топовых блоках применяются резонансные преобразователи (LLC), которые имеют более высокий КПД, но они технически сложнее.

    Выпрямление и стабилизация выходных напряжений

    На выходе БП имеется четыре напряжения:
    1) 12 В — отвечает за питание процессора, видеокарты, HDD, вентиляторов.
    2) 5 В — питание логики материнской платы, накопителей, USB.
    3) 3,3 В — питание оперативной памяти.
    4) -12 В — считается атавизмом и не используется в современных компьютерах.

    По способу выпрямления и стабилизации блоки можно поделить на четыре группы:

    1) Выпрямление с помощью диодов Шоттки (полупроводниковый прибор, у которого при прямом включении падение напряжения будет в три-четыре раза меньше, чем у обычных кремниевых), групповая стабилизация.

    Внешне их можно определить по двум крупным дросселям. На одном — три обмотки (12 В, 5 В и тонкий провод -12 В).

    Второй имеет меньший размер. Это отдельная стабилизация канала 3,3 В. Сейчас такие БП часто встречаются в основном в бюджетном сегменте. Например:

    Вот, например, фото такого блока. Очень бюджетно:

    2) Выпрямление с помощью диодов Шоттки, раздельная стабилизация на магнитных усилителях. Внешне их можно отличить по наличию в выходных цепях трех крупных дросселей. Данная схема в современных БП не используется: ее вытеснили более производительные решения. Пик такой схемотехники — начало 2000-х годов.

    3) Выпрямление канала 12 В с помощью диодов Шоттки. Напряжения 5 В и 3,3 В получают из 12 В с помощью преобразователей DC-DC. Развитие электроники позволило производить недорогие и эффективные преобразователи такого рода. БП будет ненамного эффективнее обычных с групповой стабилизацией (так как нагрузка на низковольтные каналы небольшая), но стабильность напряжений выше.

    4) Канал 12 В — синхронный выпрямитель на MOSFET (полевой транзистор с изолированным затвором), остальные напряжения получают при помощи преобразователей DC-DC.

    Это наиболее эффективная и точная, но и более сложная схемотехника. В соответствии с ней делают все топовые блоки питания. Отклонения выходных напряжений у таких блоков укладываются в один-два процента при допустимых 5 %.

    Дежурный источник питания

    Представляет из себя маломощный ИИП с напряжением на выходе 5 В. Он работает все время, пока БП подключен к сети. Обеспечивает питание микросхем внутри блока и питание логики на материнской плате, а также подает питание на порты USB при выключенном компьютере.

    Супервизор

    Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.

    Читайте также:  Формула для определения допускаемого напряжения

    Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор.

    Источник

    Так нужен ли компьютеру переменный ток?

    на страницах сайта

    www.electrosad.ru

    Где-то в макулатуре наткнулся на заметку ставящую вопрос «Нужен ли компьютеру переменный ток? Не ручаюсь за точность названия, но смысл его точно такой. Автор поставив конкретный вопрос, но мудрствуя, просто перечислил ряд напряжения и цвета проводов соединителей. Вопрос остался без ответа.
    Когда-то, в одной из статей я коротко описал, о проблемах питания компьютера по сети переменного тока. Там же была описана возможность питания ПК от сети постоянного тока.
    Попробую здесь кратко описать схему блока питания и вытекающие из нее возможности.

    Немного истории

    На заре энергетики, велись споры: каким током пользоваться в электротехнической практике, постоянным или переменным?

    Знаменитые изобретатели находили (например Н. Тесла и Т. Эдисон), для обоснования своего мнения, положительные стороны в применении одного и другого.

    Как во всякой борьбе использовались все методы, вплоть до фальсификаций. Но в конечном итоге победил переменный ток.

    И причины не только в том, что двигатели переменного тока проще, надежнее и имеют более высокий КПД.

    Главную роль сыграло то, что все более возрастающие мощности электрической энергии необходимо передавать от источника энергии (электростанции) на все большие расстояния к конечному потребителю. А на переменном токе эта проблема решалась достаточно просто. Подачей в линии электропередачи напряжения переменного тока высокого напряжения. Это напряжение с помощью трансформатора может повышаться на стороне источника энергии, высокое напряжение передается по линиям электропередачи с меньшими токами чем это бы пришлось делать на низком напряжении, а значит и с меньшими потерями. А на стороне потребителя таким же трансформатором напряжение понижалось до необходимой потребителю величины.

    С тех пор мы используем в быту именно переменный ток. И он долго служил нам верой и правдой, поскольку большинство нагрузок было активными или индуктивными.

    Но прошло время,

    громоздких и дорогих трансформаторов в бытовой технике. Теперь бытовые устройства питаются от небольших, легких и дешевых электронных блоков питания. А в них (компьютерах, телевизорах, радиоприемниках, плеерах разного назначения, да и просто зарядниках) питание внутренних узлов или нагрузок осуществляется постоянным током напряжением вписывающимся в следующий стандартный ряд: 1,5; 3; 6; 12; 24, 36, 48 (и далее) вольт. Их применение позволило (за счет замены трансформаторной стали на меньший по объему и более легкий феррит) существенно снизить вес блоков питания и расход таких ценных материалов как трансформаторная сталь и МЕДЬ. Последняя широко применяется для изготовления обмоточного провода трансформаторов, для снижения потерь в них.

    Массовое применение электронных блоков питания привело к появлению множества новых специфических проблем, в сетях переменного тока. Эти проблемы подробно описаны в статье «Компьютер в нагрузку» опубликованной в журнале «Компьютерра» №47 от 06 декабря 2002 года.

    Входные цепи стандартного блока питания подобны схеме приведенной на рис. 1.

    (Производители часто изменяют ее, но изменения делаются скорее для снижения цены за счет удаления «ненужных» элементов, чем из необходимости улучшить ее работу)

    Суть схемы изображенной на рис.1 состоит в том, что переменное напряжение 220 Вольт преобразуют в постоянное напряжением около 310 Вольт. А уже из него с помощь инверторов получают переменное напряжение высокой частоты (от 60 КГц и выше), из которого с помощью ферритового трансформатора получают необходимый набор напряжений, который далее с помощью диодных выпрямителей преобразуется в постоянный ток необходимый для питания электронных узлов.

    Особенности работы электронного блока питания

    Как уже говорилось выше, переменное напряжение 220 вольт с помощью полупроводникового моста — выпрямителя преобразуется в постоянный ток, который заряжает конденсатор (или конденсаторы) запасающие энергию необходимую для работы инвертора в паузах (когда его подпитки от сети не происходит). Этот конденсатор является емкостной нагрузкой и создает специфическую реакцию сети.

    На рис.2 показан характер установившегося изменения напряжение на накопительном конденсаторе электронного блока питания с однофазной двухполупериодной схемой выпрямления.

    Здесь: T — период следования сетевого напряжения, t зар — время зарядки накопительного конденсатора, t р — время когда потребители расходуют запасенную накопительным конденсатором энергию до последующей его зарядке через время равное — T/2 (для двухполупериодной схемы выпрямителя).

    Читайте также:  Как изменяется напряжение генератора при оборотах

    Промежуточная зарядка накопительного конденсатора (рис.2 между двумя полупериодами) производится другой (на рис не показана) полуволной переменного напряжения двухполупериодного выпрямителя.

    Для зарядки накопительного конденсатора требуется (при одной и той же потребляемой мощности) тем больший ток, чем больше соотношение T/t з. Он обычно многократно превышает средний потребляемый ток.

    Посмотрим как это выглядит при работе нескольких компьютеров включенных в общую сеть.

    Здесь: синим цветом показаны импульсы тока, заряжающие накопительный конденсатор, а красным характер изменения напряжения в сети. Проседание напряжения в момент зарядки обусловлено сопротивлением цепей разводки сетевого напряжения, поскольку она (сеть) имеет сопротивление.

    Обычно сети рассчитывается исходя из средней мощности потребляемых нагрузками и не учитывает многократно большие импульсные токи.

    Стандартная схема питания десятка компьютеров при средней потребляемой мощности порядка 250 Вт на компьютер, может иметь суммарные импульсные токи в цепи подачи питания превышающие 50 — 70 А.

    Как говорилось выше, это приводит к появлению множества спецефических проблем, в сетях переменного тока, которые описаны в статье «Компьютер в нагрузку».

    Эти явные недостатки присущи не только офисам, но домашним сетям питания электроники.

    Применение постоянного тока для питания компьютеров и
    бытовой электроники это решение проблемы перегрузки сетей
    и влияния нагрузки емкостного характера

    Поэтому на вопрос: Так нужен ли компьютеру переменный ток?

    Совсем не обязательно,

    компьютер и другую современную электронику можно питать постоянным током!

    Посмотрите на рис. 1. напрашивается простое решение — питать компьютеры и другую электронику постоянным током. даже не меняя схему самого блока питания. Для этого необходимо просто подать на блок питания постоянное напряжение соответствующей полярности и величины.

    Предостерегу от непродуманных шагов!

    Это не только снимает проблему больших импульсных токов и искажения формы напряжения питающей сети, но и позволяет упростить схему электронных блоков питания и снизить их цену без ухудшения характеристик.

    Необходимо только, чтобы инвертор блока питания устойчиво запускался на постоянном токе.

    При этом постоянным током можно питать обычные (имеющемся в массовом использовании) электронные блоки питания. Для этого необходимо соответствующим образом скорректировать питающее напряжение и определить необходимую полярность напряжения.

    Система питания компьютеров большого офиса постоянным током

    Если в офисе более 10 — 15 компьютеров, в таком случае уже целесообразно (возможно даже повышение экономической эффективности) применять питание этих компьютеров постоянным током. Это позволит снизить токи протекающие в сети до близких к рассчитанным по средней мощности.

    Общий источник питания для такой сети имеет небольшие габариты (которые определяются применяемой элементной базой), высокий КПД (до 95%) может быть построен на основе шестифазной мостовой схемы Ларионова, которая имеет вид:

    Система построенная по такой схеме имеет коэффициент пульсаций до 1,4%, при соблюдении симметрии схемы и симметрии питающего напряжения. Наихудшее значение коэффициента пульсаций, в случае не соблюдения требований симметрии, может быть в 2-3 раза хуже.

    Данная схема работает без фильтрующих конденсаторов. Применение дросселя фильтра L снизит коэффициент пульсаций до еще меньших величин и защитит первичную сеть от помех.

    К достоинству данной схемы можно отнести компенсацию емкостной составляющей нагрузки.

    Сравним

    Я думал данная статья вызовет интерес, но его не заметно.

    Поэтому для наглядности приведу две схемы вытекающее из статьи и опирающиеся на рис. 1 и 4.

    Упрощенная схема типового блока питания компьютера, которую сравним с рис.4 и обратим свои взоры к рис.6, который практически полностью соответствует рис.5.

    В красной рамке, здесь та часть схемы которая может быть удалена из БП. Правда, в большинстве случаев, необходима замена примененного симметричного фильтра на более простой П — образный.

    Продолжая рассуждения, посмотрим рис. 6.

    На рис 6 показана упрощенная схема подключения нескольких компьютеров (число ограниченно только потребностями и допустимой нагрузкой сети) для питания от трехфазной сети переменного тока.

    Здесь общая для вторичной электрической сети, выпрямительная установка, собранная по многофазной схеме Ларионова служит для ее обеспечения постоянным током нужной мощности всех потребителей. Она имеет хорошие параметры качества напряжения и полностью заменяет входные выпрямители блока питания компьютера. Это позволяет вывести блоки питания компьютеров из синхронного режима зарядки их накопительных конденсаторов, что означает снижение импульсных токов в сети и приближение их к токам рассчитанным по средней мощности. Это в свою очередь снижает их влияние на первичные цепи и полностью исключает эффекты описанные в статье «Компьютер в нагрузку» и повышает качество напряжения в первичной сети.

    И как уже говорилось выше, это позволит использовать имеющиеся блоки питания, но даст возможность их упростить в дальнейшем. Последнее позволит снизить стоимость.

    1. Компьютер в нагрузку, Олег Григорьев, «Компьютерра» №47 от 06 декабря 2002 г. Скачать статью в формате pdf .

    2. Расчет электропитающих устройств, Г.С. Векслер, Киев, Техника, 1978 г

    Источник