Меню

Параллельное соединения источник напряжения



Параллельное подключение источников питания для увеличения мощности без ухудшения рабочих характеристик

Алексей Телегин, ведущий блога по источникам питания Keysight Technologies

Мы продолжаем знакомить читателей с материалами, посвященными базовым понятиям и подходам в использовании источников питания (ИП), современным решениям в данной области и уникальным функциям, помогающим решить самые сложные задачи, возникающие при тестировании. В этом номере ведущий раздела по системам электропитания объединенного блога Keysight Technologies в России Алексей Телегин обсуждает особенности параллельного подключения ИП.

Различные варианты подключения ИП помогают пользователю решать конкретные прикладные задачи. Известны схемы последовательного подключения ИП для получения большего напряжения, а также параллельного подключения — для получения большего тока (следует отметить, что схемы сопровождает список требований и мер предосторожности). Вопрос «Как получить больше мощности от источников питания?» не теряет своей актуальности.

Параллельное подключение нескольких источников питания для увеличения напряжения связано с определенными проблемами, поскольку между источниками всегда будет наблюдаться некоторый дисбаланс напряжений. Поэтому один блок является источником напряжения, а остальные блоки соединены параллельно и работают в режиме стабилизации тока. Для поддержания такого режима предел выходного напряжения всех источников питания, действующих в режиме стабилизации тока (СС), должен быть установлен на большее значение, чем в ведущем источнике питания, находящемся в режиме стабилизации напряжения (CV) (схема на рис. 1).

Рис. 1 Параллельное подключение источников питания для получения большей мощности

При сохранении высокого уровня нагрузки параллельно соединенные блоки работают в соответствующих режимах (в данном случае как минимум 2/3 нагрузки). Но что произойдет, если не удается поддерживать высокий уровень нагрузки? На самом деле при таком подходе можно работать и при меньших нагрузках. В этом случае необходимо установить одинаковый уровень напряжения на всех блоках. Теперь при полной нагрузке блоки будут работать по той же схеме (см. выше), а блок с самым низким значением напряжения — в режиме стабилизации напряжения. Однако при снятии нагрузки более низковольтные блоки перейдут в нестабилизированный режим работы, а блок с наибольшим напряжением будет сохранять общую выходную мощность в режиме стабилизации напряжения. Эта схема показана на рис. 2 для нагрузки в пределах 0–1/3.

Рис. 2. Состояния параллельно подключенных источников питания при малой нагрузке

В результате наблюдается небольшое ухудшение рабочих характеристик. Переход между предельными значениями наименьшего и наибольшего напряжения влияет на регулирование напряжения. Кроме того, поскольку разным блокам питания приходится переключаться между режимами стабилизации напряжения, стабилизации тока и нестабилизированным режимом работы, значительно страдают характеристики напряжения переходных процессов.

Усовершенствованная версия метода параллельного подключения заключается в создании схемы «ведущий-ведомый» с управляющими сигналами для распределения тока между блоками. В источниках питания Keysight серии N5700A и N8700A реализована схема управления, приведенная на рис. 3.

Рис. 3. Параллельное подключение N5700A (используется измерение по 2-проводной схеме)

При такой схеме подключения ведущий блок, работающий в режиме стабилизированного напряжения, выдает аналоговый выходной сигнал программирования по току ведомому блоку, действующему в режиме стабилизации тока. Соответственно, оба блока равномерно распределяют ток нагрузки в широком диапазоне.

Тем не менее схема из нескольких блоков, в которой только один блок работает в режиме стабилизации напряжения, не обеспечивает такой же хорошей динамической характеристики, как один источник напряжения большей мощности. В источниках питания производительной системы питания Keysight Advanced Power System (APS) серии N6900A/N7900A реализован уникальный инновационный подход, обеспечивающий безупречное функционирование параллельно подключенных блоков питания без ухудшения рабочих характеристик. На рис. 4 показана схема параллельного подключения блоков Keysight APS серии N6900A/N7900A.

Рис. 4. Параллельное подключение источников питания APS серии N6900A/N7900A

В схеме параллельного подключения источников питания APS серии N6900A/N7900A также используется аналоговый управляющий сигнал для приведения в действие механизма распределения тока. При этом в данной схеме отсутствуют ведущее и ведомые устройства. Все блоки находятся в режиме стабилизации напряжения при равномерном распределении тока. Это позволяет пользователю легко рассчитать размеры и параметры планируемой системы электропитания без необходимости учитывать возможное ухудшение рабочих характеристик.

Появились вопросы по источникам питания Keysight?

Компания «Диполь» является официальным премиум-партнером Keysight Technologies. Наши сотрудники – высококвалифицированные специалисты, имеющие более чем 25-летний опыт работы в области контрольно-измерительных систем и оборудования. Мы ответим на любые вопросы и подберем необходимые измерительные приборы для решения ваших задач.

Источник

Параллельное соединение источников питания

Необходимость в параллельном соединении источников питания (ИП) возникает обычно по одной из следующих причин:

• резервирование ИП для увеличения надежности работы радиоэлектронной аппаратуры;

• увеличение общей выходной мощности ИП.

Примеры для обоих случаев очевидны и известны из практики. Так, резервирование ИП применяют в военной технике, на конвейерных линиях, в железнодорожном и электротранспорте. В быту резервированием ИП можно назвать применение источников бесперебойного питания (ИБП) в устройствах охраны и сигнализации, а также в компьютерной технике. Увеличение выходной мощности

Читайте также:  Как поднять напряжение конденсаторами

путем параллельного подключения ИП оправдано для питания мощной нагрузки, например радиопередатчика (трансивера) с максимальным током потребления более 20 А.

В большинстве случаев параллельное соединение источников требует реализации функции распределения тока между ними.

Защита источников без распределения тока

Такая защита часто необходима, когда требуется избежать нежелательной поломки электронных устройств вследствие отказа ИП. С этой целью соединяют два ИП в параллель способом, представленным на рис. 1.32.

Рис. 1.32. Способ параллельного соединения ИП

Допустим, ИП-2 настроен на более низкое выходное напряжение относительно ИП-1. Поэтому только первый источник питания PS1 поставляет ток в нагрузку, так как только его последовательный диод проводит ток.

Мощность на нагрузке создается только одним ИП, а не является удвоенной. Напряжение нагрузки равно напряжению источника питания минус падение напряжения на диоде (U„ – Un.uVDi)-

ИП-2 при этом находится в режиме ожидания под более низким напряжением и в случае прекращения работы ИП-1 вместо него поставляет ток в нагрузку.

При такой схеме соединения источников напряжение на нагрузке снижается при росте тока нагрузки (LOAD REGULATION), а паде-

ние напряжения на проводящем диоде растет по мере повышения тока («естественное распределение тока»).

Главным недостатком данной схемы является нестабильность напряжения на нагрузке. При изменении тока нагрузки (LOAD REGULATION) падение напряжения на диоде колеблется от О В без нагрузки до 0,6 В под нагрузкой.

Это падение напряжения уменьшает напряжение на нагрузке в зависимости от выходного тока. Поэтому эта конфигурация не используется при напряжениях ниже 12 В, когда падение напряжения на диоде составляет значительную долю от напряжения на выходе.

В этой схеме из-за отличия напряжений источников нет возможности применять корректирующие линии SENSE, так как ИП, настроенный на более низкое напряжение и находящийся в режиме ожидания, обнаружив в своих линиях SENSE повышенное по отношению к своей настройке напряжение, сразу прекратит процесс преобразования.

Защита источников с распределением тока

В этой схеме линии SENSE обоих источников подсоединены к нагрузке и между источниками питания включена линия распределе-

Для того чтобы при защите иметь стабильное напряжение на нагрузке, необходимо ввести «активное распределение тока» между ИП. При параллельном соединении источников добавляется специальная линия распределения тока, которая соединяет между собой соответствующие терминалы источников питания. Такое соединение выполняется по схеме на рис. 1.33.

Рис. 1.33. Схема с линией распределения тока

ния тока (PC). Каждый из источников питания отдает нагрузке половину своей мощности.

Источники должны быть настроены по напряжению как можно ближе друг к другу, а сопротивления соединительных проводов от каждого из источников к нагрузке должны быть равны друг другу.

Эта конфигурация позволяет соединять в параллель более ИП (N+1), когда дополнительно включается еще один резервный ИП, который в случае неисправности одного из источников начинает работать вместо отказавшего источника.

Принцип работы устройства с активным распределением тока

ИП на выходе контролирует напряжение путем сравнения напряжения, измеряемого на линиях SENSE, с внутренним эталонным напряжением. Для того чтобы источник мог эффективно делить ток с другим источником, он должен непрерывно получать информацию о своем токе и о токе другого источника. Эту информацию источник обрабатывает и использует во время контроля и регулирования выходного напряжения. При этом если ток источника слишком велик, его выходное напряжение начнет снижаться, и наоборот. Фактически поступает информация о разности токов двух источников, в случае положительной разности токов следует понизить напряжение источника, в случае отрицательной разности – повысить это напряжение. В это же время соседний источник питания получает информацию, обратную по знаку, и выполняет обратные действия. Так осуществляется балансировка токов источников.

При параллельном соединении более чем двух ИП число переменных, участвующих в процессе распределения тока между ними, велико (каждый источник нуждается в информации о своем токе и токе всех остальных). Поскольку каждый из источников осуществляет контроль и регулирование выходного напряжения и тока на основании всех переменных, то появляется опасность, что такой сложный контур регулирования может потерять стабильность, поэтому количество источников, включаемых параллельно по такой схеме соединения, ограничено.

Особенности электрической цепи

Фактически каждый источник питания представляет источник напряжения, зависящий от его тока. Положительный терминал выходного напряжения соединен с точкой контроля выходного напряжения, а отрицательный терминал выходного напряжения – с отрицательным терминалом выходного напряжения соседнего источника питания. Разность между V(I1) и V(I2) влияет на распределение напряжения между источниками так, что если она положительна, выходное напряжение первого источника должно падать, чтобы сохранять положение, когда точка контроля равняется эталонному напряжению.

Соединение для получения большей мощности

Для получения высокой мощности от двух ИП их соединение выполняется по схеме на рис. 1.34.

Читайте также:  Регулятор напряжения генератора фольксваген поло

Рис. 1.34. Электрическая схема соединения двух ИП в параллель

В этой схеме, так же как и в предыдущей, ИП соединяются между собой линией распределения тока. Без активного распределения тока параллельное соединение источников не будет нормально функционировать из-за очевидной разницы выходных напряжений ИП. Вследствие этой разницы ИП с более высоким выходным напряжением выдает на выходе максимально возможный для него ток.

Подключение к мощной нагрузке приводит к тому, что в какой-то момент времени максимальный ток ИП оказывается недостаточен. При ограничении тока напряжение источника начинает снижаться.

Это заставит источник питания с более низким выходным напряжением поставлять необходимый остаток тока. При введении активного распределения тока необходимо следить за тем, чтобы общая мощность ИП была таковой, чтобы ни от одного из источников не требовалось более 90% от расчетного (для него) максимального тока.

Источник

Совместная работа нескольких источников питания на одну нагрузку

www.electrosad.ru

У многих начинающих заниматься электроникой часто возникают проблемы нехватки мощности (тока) источников питания или недостаточной величины напряжения. Для того чтобы обойти эту проблему часто соединяют несколько источников параллельно или последовательно. Что при этом происходит и как это сделать правильно рассмотрим ниже.

Общие принципы

Параллельное и последовательное соединение элементов давно известно и применяется в практической схемотехнике, для получения заданных номиналов элементов. На примере соединения резисторов это выглядит так:

Но резистор или конденсатор имеет только один основной параметр — номинал и вариант соединения просто изменяет их результирующую (суммарную) величину.

На практике часто используется параллельное (иногда электрохимических) и последовательное соединение источников питания.

Последовательное соединение используется для увеличения результирующего напряжения, а параллельное — для увеличения суммарного потребляемого тока.

Последовательное соединение электрохимических источников питания

При последовательном соединении параметры ( E и Ri) просто суммируются,

Самое главное, Вы должны знать:

Как я уже говорил, каждый источник питания (любого типа) имеет свои характеристики которые можно свести к статическим и полностью определяющим его характеристики — Ri, U( E ); Эти характеристики химических источников тока могут меняться от экземпляра к экземпляру или со временем случайным образом (они зависят от множества параметров на каждом этапе технологического процесса их производства);

Не бывает двух абсолютно одинаковых источников питания, как вообще любых электронных компонентов. (хотя для того чтобы как-то ограничить разброс применяется группировка компонентов, по ряду номиналов и ряду точности).

Поэтому при последовательном соединении продолжительность работы химических источников тока определяется худшим в цепочке. Когда он потеряет емкость, его внутреннее сопротивление возрастет и ограничит потребляемый нагрузкой ток.

При параллельном соединении все много сложнее.

Отсюда вытекают большинство возникающих проблем.

Параллельное соединении электрохимических источников питания

При параллельном соединении электрохимических элементов (источников) питания, если не принимать мер возникают проблемы.

Дело в том что эти элементы обладают сразу несколькими параметрами определяющими их характеристики.

Напряжение (ЭДС) — E , и внутреннее сопротивление — Ri .

Сразу стоит уточнить, что эти параметры сугубо индивидуальны и поэтому достаточно редко даже в одной партии они повторяются.

Посмотрим рисунок 3, при параллельном соединении двух разных источников питания (электрохимический элемент), имеющих равное внутренне сопротивление (Например 0,25 ом, суммарное 0,5 ) и разное выходное напряжение ( U 1 =2,2 В, U 2 =2,1 В, Δ U= 0,1 В ) между ними появляется ток перетекания I пер равный 0,2 А.

Этот ток будет существовать даже при выключенной нагрузке, пока напряжение на источниках не сравняется. Когда лучший электрохимический элемент разряжается на худший — это потеря их суммарной емкости.

Поэтому параллельное соединение отдельных элементов электрохимических источников тока не рекомендуется. Возможно параллельное соединение (резервирование) последовательных батарей элементов с применением специальных устройств защиты (см. рис. 6) от токов перетекания или коммутаторов.

Фотоэлектрические элементы — элементы солнечных батарей

Немного иная ситуация получается при параллельном соединении элементов солнечных батарей, которая определяется свойствами самого солнечного элемента. Это генерация тока под действиями квантов света попадающих на плоский p-n переход достаточно большой площади. Солнечный элемент имеет вольт-амперную характеристику подобную полупроводниковому диоду с соответствующими отклонениями присущими p-n переходам большой площади.

Поэтому для солнечного элемента токи перетекания отсутствуют. Но наличие в параллельно соединенных элементах Δ U, приводит к тому что при малом отборе тока элемент с меньшим напряжением просто отключается. А при высоком отборе мощности ток нагрузки каждого элемента разный и определяется током нагрузки на каждом элементе при данном напряжении нагрузки U. см. рис. 5.

Посмотрим на примере вольт амперной характеристики элемента солнечной батареи, что происходит при их параллельном соединении, как показано на Рис. 1б. Примерный график вольт амперной характеристики приводится ниже.

На рис. 5 видим, что при равном напряжении U н элемент SC3 генерирует ток I 1 меньший тока генерируемого элементом SC4 равного I 2 . В результате суммарный ток нагрузки равен:

Читайте также:  Среднее напряжение ступени это

То есть при данном U н отдаваемая соединенными параллельно элементами мощность равна:

Этот требует, чтобы не перегружать лучшие элементы, группировать при параллельном соединении элементы с близкими токами (характеристиками в рабочих точках).

А еще лучше формировать последовательно соединенные группы элементов на номинальное напряжение с последующим их соединением в параллельные группы заданной мощности.

Совместная работа батарей химических элементов

Часто рекомендуют при параллельном подключении батареи электрохимических источников использовать включенные последовательно с каждой батареей диоды, которые предотвратят токи перетекания. Но условия равенства их выходного напряжения (максимальной близости) сохраняется. Это особенно важно именно для электрохимических источников питания, которые имеют ограничения по разрядному току. В случае его превышения сокращается ресурс. Схема включения показана на рис. 6.

Здесь необходимо учитывать, что выходное напряжение такой батареи меньше на 0,3 -:- 0,8В (падение напряжения на p-n переходе диода при его прямом смещении) чем у батареи без защитных диодов. Как видно из величины потери напряжения использовать эту схему для параллельного соединения отдельных элементов не экономично. Велики потери мощности.

Диоды так же позволяют использовать горячую замену батареи, поскольку при подключении свеже заряженной батареи диод разряженной просто будет заперт.

Блоки питания

Свои особенности при параллельном соединении имеют и блоки питания работающие на общую нагрузку.

Все типы блоков (сетевые 50 Гц и импульсные — в том числе повышающие и понижающие преобразователи постоянного тока в постоянный) содержат в своем составе преобразователь напряжения (трансформатор или электронный импульсный преобразователь с трансформатором) и выпрямляющее устройство на выходе — диодные выпрямители. На рис. 7 показано такое соединение.

В данной схеме, как при параллельном соединении солнечных элементов, не существует статических токов перетекания, они пресекаются диодными выпрямителями которые, как известно, имеют очень большое обратное сопротивление.

Обязательное условие при таком включении блоков питания это: равенство напряжений и наличие соединения общих точек обоих источников питания показанных на рис. 7 пунктирной линией красного цвета. Это условие определяется, как понятно из сказанного выше, а равномерной нагрузкой каждого источника питания.

Но она, как любая система, имеет свои особенности.

Это импульсные токи перетекания при зарядке фильтрующего конденсатора с меньшим напряжением (например U2 ) от БП1, где напряжение больше. После выравнивания напряжения ток перетекания уменьшается до нуля.

В реальности напряжение на выходе БП1 и БП2 разное. И поэтому рассматриваем работу такой связки учитывая дополнительные параметры показанные на рис 8 .

Известно, что каждый блок питания имеет свое внутреннее сопротивление Ri, а за счет системы стабилизации его величина существенно снижается. Практически Ri определяет КПД блока питания и желательно чтобы соотношение Rн/ Ri было максимальным. Поскольку ток нагрузки блока питания определяется суммой Ri и Rн, а как мы уже знаем Ri -> min, то можно считать, что он целиком определяется R н.

В связке двух параллельно включенных блоков питания нагружается только тот БП который имеет более высокое выходное напряжение. То есть I н = I 1 . Это будет продолжаться до тех пор пока выходное напряжение (за счет падения напряжения на Ri ) не начнет падать (система стабилизации не сможет его поддерживать, когда ток нагрузки достигнет максимального, в этом случае начнет расти внутреннее сопротивление нагруженного блока питания Ri. ). Второй БП будет до этого будет работать в режиме холостого хода.

Такой режим работы нельзя считать нормальным.

Кроме выравнивания выходного напряжения — известно другое решение проблемы, это включение последовательно с выходом каждого БП небольшого выравнивающего резистора, который как бы увеличивает его внутреннее сопротивление, в результате чего выходное напряжение падает и включается в работу блок питания имеющий меньшее напряжение. Причем их величина одинакова для обоих.

Величина этого сопротивления от 1% до 10% от R н и зависит от разницы выходных напряжений и мощности нагрузки.

Недостаток данного решения потери мощности в выравнивающих резисторах.

Но, для равномерной загрузки, требование максимального сближения U1 и U2 остается.

Заключение

В Интернет форумах множество публикаций посвященных параллельному включению и только единичные сообщения о фатальных результатах. эти единичные случаи возможны из-за скрытых неисправностей блоков питания или большой разницы выходных напряжений.

Параллельное соединение выходных цепей блоков импульсных питания возможно. Но при этом для равномерной загрузки их выходные напряжения должны быть максимально близки. В случае невыполнение этого условия возможна перегрузка БП с большим напряжением.

Параллельное включение отдельных электрохимических элементов питания недопустимо,

Параллельное включение батарей электрохимических элементов питания возможно при условии применения защитных диодов в составе каждой батареи,

Параллельное соединение фотоэлектрических элементов допустимо, но при этом надо учитывать что возможна перегрузка лучших элементов в группе (с наибольшим напряжением), а при большой разнице в выходном напряжении худший элемент может вообще не включаться в работу.

Обсуждения параллельного включения блоков питания компьютеров :

Источник