Меню

Падение напряжения питания видеокамер длины



Правильное питание уличных телекамер

Падение напряжения на питающем кабеле — наиболее частая проблема, с которой приходится сталкиваться при установке уличных видеокамер и ИК-прожекторов.

Потерянная мощность

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91156

Рассматриваемая проблема и пути ее решения, прежде всего, относятся к уличным видеокамерам и ИК-прожекторам, работающим от напряжения питания 12 Вольт. Провод, по которому происходит подача питания на уличную видеокамеру, обладает сопротивлением, достаточным для потери нескольких вольт. В результате до камеры вместо требуемых 12 Вольт доходит гораздо меньшее напряжение. В свою очередь это ведет к ухудшению качества изображения, а также к снижению чувствительности видеокамеры.
По статистике большая часть уличных камер устанавливается летом и при включении отлично работают. Неприятности начинаются в холодное время года, когда включается автоподогрев, резко увеличивающий потребление тока. Камера просто перестает работать.

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91157

Влияние на изображение

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91161

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b92058

Небольшое снижение напряжения порядка 2 Вольт практически не сказывается на работе камеры. Проблемы, как правило, начинаются при напряжении питания ниже 8,5 Вольт.
Для питания CCD-матрицы необходимо 2 типа напряжений: +15 Вольт и -7 Вольт, кото­рые формируются внутренними умножителями внутри видеомодуля. При снижении напряжении на входе камеры умножители не справляются с поставленной задачей и выдают некорректные значения. Вследствие этого сначала снижается чувствительность CCD-матрицы, а затем изобра­жение начинает «заплывать».

Влияние на подсветку

Особенно сильно падение напряжения питания сказывается на мощность ИК-подсветки. При уменьшении напряжения всего на 2 вольта светимость прожектора падает в 5 раз.
Конечно, можно применять схему стабили­зации тока ИК-прожекторов, но, как правило, это ведет к ряду других недостатков. Существуют 2 способа стабилизации тока ИК-излучателей:

1. LDO-схема. В этом случае на светодиоды подается пониженное напряжение 6-7 Вольт, а остальная мощность рассеивается на радиаторе. Недостатком такого решения является допол­нительный нагрев корпуса прожектора и низкая мощность подсветки.

2. Импульсная схема. При импульсной стабилизации излучателей отсутствует допол­нительный нагрев, а ток отслеживается схемой с обратной связью. Недостатком данного решения является высокая стоимость ИК-прожектора.
Как показывает практика, оптимальным ре­шением для правильной работы ИК-прожекторов остается поддержание напряжения питания на необходимом уровне.

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91159

Решение №1: повышенное напряжение

Одним из распространенных, но не самых удачных методов, применяемых для питания уличных камер видеонаблюдения, является применение источника питания с повышенным выходным напряжением. Обычно для этих целей используются блоки питания с выходным напряжением 13,5-13,8 Вольт.

Простота установки
Собственно, установка самого блока питания простая. Основная сложность заключается в прокладке питающего кабеля. Необходимо правильно подобрать его сечение, чтобы на камере получить заданное напряжение питания.

Стабильность напряжения на камере
Остается вопрос стабильности напряжения при включении/выключении обогревателя камеры. В любом случае, в холодное время года, напряжение на камере будет меньше, чем летом. Ситуация усугубляется в случае применения уличных камер со встроенной ИК-подсветкой.

Стабильность питания для ИК-прожекторов
Инфракрасные прожектора чувствительны к изменению питания, поэтому необходимо достаточно корректно подобрать сечение кабеля и рассчитать падение напряжения. Сложность возникает, когда используются несколько прожекторов, установленных на разных расстояниях от источников питания.

Вероятность возникновения наводок
Для исключения появления наводок придется очень корректно прокладывать питающий кабель, стараясь исключить его пересечения с сетевыми проводами.

Стоимость
Стоимость блока питания немного выше обычного, но стоимость кабеля при значительной длине может оказаться достаточно существенной.

Решение №2: блок питания недалеко от камеры

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91162

В случае установки источника питания рядом с камерой, например с противоположной стороны стены внутри помещения, решается подавляющее большинство проблем, связанных с падением напряжения. Также исключается появление нежелательных наводок.

Простота установки
Единственным ограничением может стать отсутствие места для установки самого блока питания в силу тех или иных причин. Например, когда камера или ИК-прожектор расположены далеко от помещения, где возможно расположить источник питания.

Стабильность напряжения на камере
Данное решение гарантирует стабильное питание на камере. Включение/выключение автоподогрева также не влияет на величину напряжения на камере видеонаблюдения.

Стабильность питания для ИК-прожекторов
Стабильность яркости подсветки при использовании данного решения обеспечивается малой длиной линии питания. Наиболее заметный результат проявляется при использовании ИК-прожекторов с большим током потребления.

Вероятность возникновения наводок
Вероятность появления наводок на изображении крайне мала в силу небольшого расстояния между блоком питания и видеокамерой. Но в любом случае необходимо предусмотреть отсутствие пересечения линии 12 Вольт с силовыми проводами. Не следует также подключать к одному блоку питания сразу несколько камер, так как в ряде случаев возможно их взаимное влияние друг на друга.

Читайте также:  Стабилизатор выходного напряжения для импульсного блока питания

Стоимость
Невысокая стоимость данного решения обусловлена использованием обычного блока питания и отсутствием необходимости использования дополнительных проводов для подводки 12 Вольт.

Решение №3: уличный блок питания

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b91163

В настоящее время такой подход получает все большее распространение благодаря снижению стоимости на герметичные уличные блоки питания. Применение уличного источника питания позволяет полностью избавиться от всех видов наводок. В силу близкого расположения к видеокамере и короткой линии питания, напряжению просто негде теряться.

Простота установки
Одним из плюсов является отсутствие необходимости поиска места для установки блока питания. Также упрощается запуск и обслуживание системы видео наблюдения.

Стабильность напряжения на камере
Высокая стабильность напряжения на видеокамере обеспечивается короткой длиной линии питания 12 Вольт. Кроме этого, полностью исчезает проблема появления нежелательных наводок от соседних электропроводок.

Стабильность питания для ИК-прожекторов
Данный метод позволяет добиться стабильной яркости подсветки. Для ИК-прожекторов большой мощности использование уличного блока питания может оказаться единственно верным решением.

Вероятность возникновения наводок
Короткая линия питания камеры видеонаблюдения полностью исключает появление нежелательных наводок на изображении.

Стоимость
До недавнего времени высокая цена уличных источников ограничивала их массовое применение в системах видеонаблюдения. Использование новых технологий позволило существенно снизить стоимость данного решения.

Источник

Сечение кабеля питания для видеонаблюдения

После того как вы определились с выбором видеокамер для видеонаблюдения, вторым шагом, но не менее важным, является определение сечения кабеля, через который будет подаваться питание на видеокамеры. Не так редки случаи, когда пренебрегая, или вовсе не задумываясь, о таком важном значении, как расчёт падения напряжения в кабеле, после выполненного монтажа камер наблюдения и кабеля, возникает ситуация, когда все видеокамеры или их часть, просто отказываются работать.

Потери напряжения в кабеле

А связанно это с потерями в кабеле, через который идёт питание на камеры видеонаблюдения. Величина этих потерь (по напряжению), зависит от сечения кабеля, длины кабеля и суммарного тока потребляемым камерами видеонаблюдения.

При расчетах, прежде всего, необходимо выяснить два основных параметра камер видеонаблюдения:

  1. Минимальное напряжение необходимое для работоспособности камеры.
  2. Максимальный ток потребления камеры наблюдения при включенной инфракрасной подсветки и обогреве, если таковые имеются.

Как правило, для видеокамер наблюдения с номинальным напряжением питания 12 Вольт ,минимальное напряжение это 9 Вольт, то есть падение напряжения на кабеле не должно превышать 3 Вольта.

Теперь давайте рассчитывать!

Основная формула для расчёта падения напряжения:

U — Падение напряжения, В;

I — ток в проводе , А;

L— длина провода , м;

q — сечение провода , мм 2 ;

ρ—удельное сопротивление ,ом*мм 2 /м, удельное сопротивление меди 0,0175.( качественный медный кабель)

2— Ток протекает по одной жиле кабеля, а по другой возвращается , удваивается длина.

Пример расчёта сечения кабеля для видеонаблюдения:

Необходимо запитать две камеры видеонаблюдения от одного блока питания одним кабелем.

Длина кабеля- 35 метров,

Блок питания -12 Вольт 2 Ампера,

Видеокамера с напряжением питания 9…14В, максимальный ток потребления 800 миллиампер;

У нас две камеры запитанных от одной точки поэтому 800мА+800мА=1600мА=1,6А

Возьмём для расчета кабель сечением 0,75мм 2

Напряжение на конце кабеля будет 12-2,6=9,4В что в пределах нормы.

Источник

ПИТАНИЕ КАМЕР И СИСТЕМ ВИДЕОНАБЛЮДЕНИЯ

По виду напряжения питания камеры видеонаблюдения можно подразделить на три группы:

  • с питанием постоянным напряжением 12 В (=12),
  • постоянным 24 Вольта (=24),
  • камеры, питающиеся от переменного напряжения 220 Вольт (

Основное достоинство использования постоянного напряжения питания — высокая степень электробезопасности. Вместе с тем, при значительных мощностях (большом количестве камер) требуется использование проводов значительных сечений.

Поскольку любой проводник обладает сопротивлением (которое тем выше, чем меньше его сечение и больше длина), на нем происходит падение части напряжения питания. В этом можно легко убедиться, вспомнив закон Ома (рис.1).

Питание камер видеонаблюдения

На участке L1 потери напряжения будут составлять U1, таким образом на камеру К1 поступит напряжения питания Uк1=Uп-U1. Следующей камере видеонаблюдения «достанется» еще меньше и так далее по цепочке.

Чтобы избавить Вас от излишних расчетов, приведу значения удельного сопротивления (Ом/метр) медных проводников, наиболее часто используемых сечений:

Сечение (мм 2 ) Удельное сопротивление (ом/м)
0,5 0,035
0,75 0,022
1,0 0,015

Следует помнить, что при расчетах (проектировании) системы видеонаблюдения значение длины провода следует брать в два раза больше чем расстояние от блока до камеры, поскольку проводников два (плюс и минус). Пример расчета приведен в конце статьи.

Что касается питания 220 Вольт, то, в большинстве случаев, здесь потерями напряжения можно пренебречь. Однако, с точки зрения безопасности этот вариант менее предпочтителен, хотя в ряде случаев, например при организации уличного видеонаблюдения, его реализация может оказаться проще и дешевле.

ПРОВОДА ДЛЯ ПОДКЛЮЧЕНИЯ ПИТАНИЯ К ВИДЕОКАМЕРЕ

Для подачи питания на камеру видеонаблюдения требуются, как минимум:

  • провода и кабели;
  • коммутационные изделия: штекеры, разъемы и пр.

Поскольку видеокамеры с напряжением 12 Вольт встречаются чаще всего, при рассмотрении вопроса подключения электроэнергии будем рассматривать этот случай. По большому счету, все что будет сказано применимо для любых вариантов, кроме камер на 220 Вольт.

С учетом того, что рассматриваемые подключения являются слаботочными, теоретически можно использовать любой провод (от силового до сигнального). Кабели с многопроволочными жилами предпочтительней однопроволочных по причине гибкости. Причем это свойство бывает полезно не столько при прокладке кабеля, сколько при его соединении с разъемом.

Лично для меня оптимальным вариантом является ШВВП 2х0,5 или ШВВП 2х0,75 с сечением жилы 0,5 и 0,75 мм 2 соответственно.

Для облегчения жизни монтажника существует комбинированный провод для систем видеонаблюдения КВК. Он представляет собой объединенные общим слоем изоляции коаксиальный кабель и уже упоминавшийся шнур ШВВП. Выгода при этом заключается в прокладке одной линии вместо двух.

В каких-то случаях это критично, в каких-то нет, но один недостаток следует отметить. Это необходимость установки блока питания в непосредственно близости от видеорегистратора.

В противном случае придется разделывать кабель посередине, провод питания пойдет на блок, а коаксиал – к регистратору. Зачастую это неудобно и явных выгод не сулит.

Кроме того, такое решение приемлемо для аналоговых камер, поскольку IP видеокамеры подключаются по витой паре, а не коаксиальному кабелю (речь идет о передаче видеосигнала). Стоит заметить, что организация их питания имеет дополнительные возможности.

Иногда требуется камера с автономным питанием. Это может быть беспроводная WiFi камера, или видеокамера с записью на карту памяти или флешку. Интересующиеся могут заглянуть сюда, но должен заметить этот вариант скорее исключение чем правило.

Разъемы для подключения питания камер можно разделить на две группы по способу соединения с проводом:

  • под пайку;
  • под винт (зажим).

Первый тип обеспечивает надежное долговременное соединение. Способ этот достаточно трудоемкий и в «полевых» условиях неудобен. Для этих случаев лучше подходит второй вариант.

ПОДКЛЮЧЕНИЕ ПИТАНИЯ IP КАМЕРЫ

Помимо классического варианта: питания от отдельного блока, в IP видеонаблюдении существует возможность одновременной передачи по одной линии (витой паре) видеосигнала и постоянного напряжения. Это технология PoE (Power over Ethernet).

Достаточно подробно про нее написано в отдельной статье. Здесь же имеет смысл кратко перечислить основные устройства для организации питания ip камеры по витой паре.

К ним относятся:

  • потребители (PD);
  • источники (PSE);
  • сплиттеры;
  • конверторы.

Первая группа это ни что иное как видеокамеры, то есть конечные устройства. Источниками PoE могут являться отдельные блоки или коммутаторы, маршрутизаторы, поддерживающие данную опцию.

Вариантов и способов реализации здесь много, но их рассмотрение не является целью данной статьи.

Если PoE устройство, являющееся источником преобразует напряжение в сигнал для передачи по витой паре, то сплиттеры выполняют задачу прямо противоположную. На выходе они формируют постоянное напряжение для устройств, не поддерживающих технологию PoE. Конвекторы (преобразователи) служат для подключения камер, имеющих отличные от источника уровни напряжения и стандарты.

В ряде случаев применение блоков и других источников, поддерживающих PoE весьма удобно , например, для уличных ip камер.

БЛОК ПИТАНИЯ ДЛЯ ВИДЕОНАБЛЮДЕНИЯ

Наиболее часто для питания камер видеонаблюдения используются блоки питания (БП) напряжением 12В.

Первое на что следует обратить внимание при выборе блока питания — это его мощность (рабочий ток), которые связаны между собой следующими соотношением:

P=I*U или I=P/U , где:

  • P (Ватт) — мощность,
  • I (Ампер) — ток,
  • U (Вольт) — напряжение.

Следует заметить, что ориентироваться надо на номинальные значения тока и мощности, но никак не на максимальные (пиковые).

Теперь что касается некоторых функциональных возможностей блоков питания:

Стабилизация напряжения.

Если сетевое напряжение на объекте где установлено видеонаблюдение не подвержено скачкам и провалам, то можно использовать нестабилизированный блок, тем более он дешевле.

Защита от перегрузок и замыканий.

Главным образом — это нужно для защиты самого блока. Однако, при срабатывании он отключит все питаемые от него камеры, как следствие — система «зависнет».

На важных с точки зрения безопасности объектах для минимизации подобных рисков стоит использовать несколько источников питания (для небольших групп камер — отдельный) или многоканальные блоки с независимой защитой по каждому каналу. Кстати, это позволит предотвратить возможность взаимных помех по цепи питания.

Способ преобразования.

Импульсный блок питания при прочих равных условиях имеет меньшие габариты и вес, чем трансформаторный. Для больших токов он предпочтительнее.

Если система видеонаблюдении имеет небольшое количество камер – это может быть вариант с:

  • частным домом;
  • дачей;
  • квартирой,

то можно обойтись трансформаторным. Здесь определяющим фактором выбора будет цена.

Стоит учесть, что некачественное импульсное устройство может явиться источником дополнительных помех.

Многоканальные блоки питания.

Одна из проблем, которая может встретиться при эксплаутации системы видеонаблюдения – помеха в виде полос на экране монитора. Она может быть вызвана разными причинами, в том числе и наводками на камеру или линию питания.

Через блок питания такая помеха может распространиться на все камеры системы. Чтобы этого не произошла используют многоканальные БП, в которых видеокамеры развязаны друг от друга по питанию различными схемотехническими решениями.

БЕСПЕРЕБОЙНЫЕ БЛОКИ И ИСТОЧНИКИ ПИТАНИЯ ДЛЯ КАМЕР

Для камер бесперебойное питание имеет смысл при наличии резерва для остальных компонентов оборудования системы, например, видеорегистраторов или ПК. Для особо важных объектов эту опцию рекомендуется предусмотреть.

Кроме общих никаких особых требований в большинстве случаев к ним не предъявляется. Используются широко распространенные блоки бесперебойного питания для систем сигнализации. По ссылке можно посмотреть пример их расчета, но конспективно я приведу его и здесь.

Осуществляется он в два этапа:

  • определяем номинальную мощность (ток);
  • рассчитываем емкость аккумулятора (АКБ).

По первой позиции берем токи потребления всех камер, подключаемых к источнику и суммируем. Обратите внимание, ориентировать нужно на максимальные значения. Например, ночью видеокамера за счет инфракрасной подсветки потребляет большую мощность (ток). То же самое касается камер уличного исполнения с подогревом.

Найдите в характеристиках именно такие параметры, если они указаны отдельно – это достаточно важный момент.

От емкости аккумулятора зависит как долго камера будет работать в автономном режиме. Учтите такие моменты как:

  • нет смысла брать для расчета время большее, чем для других компонентов системы;
  • не нужно доводить АКБ до полного разряда, поэтому запас по емкости берите 20-30%.

Давайте прикинем, уличная камера с ИК подсветкой может потреблять до 1,5 Ампер. При емкости аккумулятора 7 А/час этого хватит часа на 3 работы. Соответственно, если к одному бесперебойному блоку мы подключим три таких видеокамеры, то он проработает в автономном режиме немногим более часа.

Учтите, в режиме работы от сети он должен обеспечивать номинальный ток 4,5 А. Кроме того, токи в режиме резерва и при работе от сети могут отличаться. И еще – максимально поддерживаемая блоком емкость АКБ тоже нормируется. Поэтому смотрите на совокупность всех перечисленных выше параметров.

Для видеорегистраторов или видеосерверов обеспечение бесперебойной работы в автономном режиме на протяжении более менее длительного времени задача может не столько сложная, сколько дорогая.

ПРИМЕР РАСЧЕТА ПИТАНИЯ ДЛЯ КАМЕР ВИДЕОНАБЛЮДЕНИЯ

Исходные данные:

  • количество камер видеонаблюдения — 4,
  • расстояние до камер 50 метров (будем считать, что все камеры расположены в непосредственной близости друг от друга),
  • ток потребления каждой камеры 150 мА,
  • напряжение питания камеры видеонаблюдения 12В+/-10%.

Определяем суммарный ток потребления I=150*4=600мА=0,6А .

Выбираем соответствующий блок питания, смотрим параметры его выходного напряжения, например 12,6+/-0,2В.

Определяем минимальный уровень напряжения блока 12,6-0,2=12,4В и камеры 12В-10%=10,8В .

Максимально допустимый уровень потерь составит U=12,4-10,8=1,6В .

Рассчитываем максимально возможное сопротивление линии (рис.1) R=U/I=1,6/0,6=2,7 Ом .

Общая длина провода L=50*2=100 метров .

Максимально допустимое удельное сопротивление Rуд=R/L=2,7/100=0,027 Ом/метр .

По приведенной в начале статьи таблице определяем, что сечение провода должно составлять не менее 0,75 мм 2 .

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Источник