Меню

Определить мощность электродвигателя для привода водяного насоса



Определение мощности электродвигателя для привода насоса

date image2015-10-16
views image2294

facebook icon vkontakte icon twitter icon odnoklasniki icon

При расчёте мощности электродвигателя исходными данными являются производительность насоса (секундная подача) и напор. Подачу и напор насоса принимают по режимной точке работы системы

( насосы – водопроводы – сеть ) или ( насосы –водопроводы ).

Мощность насоса, кВт, определяется по формуле:

где γ — удельный вес перекачиваемой жидкости, кг/м 2 · с 2 :

Qпроизводительность насоса, м 3 / с:

h НАС — к.п.д. насоса при работе в данном режиме: для поршневых насосов 0,7-0,98: для центробежных насосов при давлении выше 40 м (39000 H/м 2 ) 0,6 — 0,77; при давлении ниже 40 м – 0,3 — 0,6.

Мощность электродвигателя насоса ( кВт) принимают больше мощности, потребляемой насосом, на случай перегрузок от неучтённых условий работы

P = ,

где K — коэффициент запаса мощности ;

h ПЕР — к.п.д. передачи.

При непосредственном соединении вала насоса с валом электродвигателя

h ПЕР.=1. При соединении приводного двигателя насоса через промежуточную передачу h ПЕР — принимается по паспорту.

Коэффициент запаса мощности принимается в зависимости от мощности насоса:

Мощность насоса ,кВт менее 20 20-50 50-300 более300
Коэффициент запаса мощности 1,25 1,2 1,15 1,1

и зависит также от соотношения мощности насоса при расчётных, подаче и напоре; ближайшего значения мощности электродвигателя, изготовляемого промышленностью, паспортные данные которого соответствуют условиям работы насосного агрегата.

Примечание: при выборе электродвигателя к центробежному насосу необходимо обратить внимание на частоту вращения двигателя, т.к. у центробежного насоса мощность — P; напор — H; производительность- Q; вращательный момент двигателя — М и частота вращения –n связаны соотношениями:

где индекс 1 соответствует исходным значения, а 2 – новым расчётным решениям.

Таким образом, при изменении скорости вращения двигателя исходные параметры насоса и двигателя должны быть пересчитаны.

При выборе электродвигателя к насосам необходимо знать мощность,

частоту вращения, напряжение в сети, тип и исходные двигателя. Необходимо стремиться подобрать мощность двигателя ближе к номинальной, поскольку номинальный режим двигателя соответствует максимальному к.п.д. и удовлетворя- ет установленным нормам и требованиям в отношении нагрева, коэффициента мощности, электрической прочности и т.п.

Источник

Определение мощности электродвигателей приводов вентиляторов, водяного насоса и компрессора

На пассажирском вагоне с кондиционированием воздуха установлены вентиляторы системы вентиляции вагона и вентилятор конденсатора. Прежде чем определить необходимую мощность электродвигателя, необходимо правильно выбрать расчетный режим работы вентилятора. Этот режим задан расчетной производительностью и расчетным напором вентилятора. Мощность электродвигателя вентилятора системы вентиляции вагона определяется по формуле:

, (1)

где – коэффициент запаса мощности, ;

– производительность вентилятора, м3/с;

– напор, создаваемый вентилятором, Па,

– КПД вентилятора, .

Производительность вентилятора системы вентиляции вагона определяется с учетом расчетной нормы подачи свежего наружного воздуха на одного пассажира, :

, (2)

где – расчетная норма подачи наружного воздуха на одного пассажира, ;

– расчетное число пассажиров в вагоне, ;

Читайте также:  Как увеличить мощность электроэнергию генератора

– число проводников, ;

– коэффициент рециркуляции вентилируемого воздуха, .

Подставим имеющиеся значения в формулу (2) и получим:

.

Полученное значение подставим в (1) и получим:

.

Мощность электродвигателя привода вентилятора конденсатора воздухоохладительной установки определяется по формуле:

, (3)

где – коэффициент запаса мощности, ;

– производительность вентилятора конденсатора, ;

– напор, создаваемый вентилятором конденсатора, ;

– КПД вентилятора конденсатора, .

Подставим имеющиеся значения в формулу (3) и получим:

Мощность электродвигателя привода водяного насоса отопления определяется по формуле:

где – коэффициент запаса мощности, ;

– производительность водяного насоса, ;

– напор, создаваемый водяным насосом, ;

– КПД водяного насоса, .

Подставим имеющиеся значения в формулу (4) и получим:

.

3.2 Определение мощности электродвигателя привода компрессора установки охлаждения воздуха

Мощность электродвигателя привода компрессора установки охлаждения воздуха определяется по формуле:

, (4)

где – коэффициент, учитывающий режим работы компрессора, ;

– общий (полный) тепловой поток, который должен быть отведен воздухоохладителем, Вт.

Общий (полный) тепловой поток складывается из шести тепловых потоков:

1 тепловой поток, поступающий через поверхность кузова вагона, Вт определяется по формуле:

, (5)

где – поверхность кузова вагона, через которую происходит передача тепла (можно принять );

– расчетная температура наружного воздуха летом, ;

– расчетная температура воздуха внутри вагона летом, ;

– средний коэффициент теплоотдачи поверхности вагона, .

Подставим имеющиеся значения в формулу (5) и получим:

;

2 тепловой поток от инфильтрации для летнего периода эксплуатации определяется по формуле:

(6)

;

3 тепловой поток, приносимый наружным воздухом при вентиляции вагона определятся по формуле:

, (7)

где – расчетная норма подачи наружного воздуха на одного пассажира, ;

– теплоемкость воздуха, ;

– расчетное число пассажиров в вагоне, ;

– расчетная температура наружного воздуха летом, ;

– расчетная температура воздуха внутри вагона летом, .

По расчету получим:

;

4 тепловой поток за счет солнечной радиации определяем по формуле:

, (8)

где – расчетная поверхность кузова вагона, подвергающаяся солнечной радиации (принимаем );

– площадь поверхности кузова вагона (принимаем );

– расчетная (максимальная) температура поверхности кузова вагона, ;

– продолжительность солнечного облучения вагона в течение суток, ;

– средний коэффициент теплоотдачи поверхности вагона, .

Подставим в формулу (8) и получим:

;

5 тепловой поток, выделяемый пассажирами вагона, определяется по формуле:

, (9)

где – мощность теплового потока, выделяемого одним пассажиром, ;

– расчетное число пассажиров в вагоне, .

;

6 мощность теплового потока от электродвигателей, расположенных внутри вагона, осветительных и других электроприборов, принимается:

. (10)

Таким образом, общий тепловой поток определяется по формуле:

(11)

Подставим полученные ранее значения тепловых потоков в формулу (11) и получим:

.

Подставим полученное в формуле (11) значение в (4) и получим:

.

3.3 Выбор двигателей по каталогу

По найденным мощностям и с учетом условий работы по каталогу выбираем необходимые электродвигатели и определяем номинальный ток. Так как электродвигатели постоянного тока, то номинальный ток определяем по формуле:

Читайте также:  Мощность обогрева боковых зеркал

, (12)

где – мощность электродвигателя по каталогу;

– номинальное напряжение сети вагона, ;

– КПД электродвигателя.

Для вентилятора системы вентиляции выбираем электродвигатель типа П32 с номинальной мощностью 1,0 кВт и КПД 0,79. По расчету номинальный ток равен:

.

Для вентилятора конденсатора выбираем электродвигатель типа П41 с номинальной мощностью 1,5 кВт и КПД 0,75. Номинальный ток 18,2 А.

Для привода водяного насоса отопления выбираем электродвигатель типа П22 с номинальной мощностью 0,5 кВт и КПД 0,72. По расчету номинальный ток равен:

.

Для привода компрессора выбираем электродвигатель типа П62 с номинальной мощностью 8 кВт и КПД 0,85. По расчету номинальный ток равен:

.

Выбранные электродвигатели и их характеристики сведены в таблицу 1.

Таблица 1 – Электродвигатели, устанавливаемые в вагоне

Наименование двигателя, механизма Мощность, полученная расчетом, кВт Номинальная мощность по каталогу, кВт Тип Номинальный ток двигателя, А Номинальный КПД двигателя Кратность пускового тока
Электродвигатель вентилятора системы вентиляции 0,8 1,0 П32 11,5 0,79 2
Электродвигатель вентилятора конденсатора 1,5 1,5 П41 18,2 0,75 2
Электродвигатель привода водяного насоса отопления 0,36 0,5 П22 6,3 0,72 2
Электродвигатель привода компрессора 7,5 8,0 П62 85,6 0,85 2

3.5 Определение мощности осветительной нагрузки

Мощность осветительной нагрузки для каждого из помещений вагона определяем по формуле, Вт:

, (14)

где р – удельная мощность осветительной нагрузки для данного вида помещения, т.е. мощности на единицу площади этого помещения, Вт/м2;

Fn – площадь помещения, для которого определяется мощность осветительной нагрузки, м2.

Расчет осветительной нагрузки по каждому типу помещения приведен в таблице 2.

Таблица 2 – Расчет мощности осветительной нагрузки вагона

Удельная мощность осветительной нагрузки, р Вт/м2

Мощность, РОН, Вт

Мощность сигнальных, служебных и других специальных ламп принимаем равной 350 Вт. [принимаем по источнику 1.]

Мощность осветительной нагрузки всего вагона определяем по формуле:

, (15)

Вт.

Вт.

Мощность преобразователя для люминесцентного освещения вагона вычисляем по формуле, Вт:

, (16)

электроснабжение пассажирский вагон электродвигатель

где ηпр – кпд статического полупроводникового преобразователя, ηпр =0,8.

Вт.

3.6 Перечень потребителей электроэнергии пассажирского вагона и их характеристики

Перечень потребителей электроэнергии пассажирского вагона и их характеристики, приведены в таблице 3.

Таблица 3 – Перечень потребителей электроэнергии вагона

Источник

Мощность насоса

Мощность является одной из основных характеристик насоса. В настоящее время под термином «водяной насос» понимается специальное устройство, служащее для перемещения перекачиваемой среды (твердых, жидких и газообразных веществ).

В отличие от водоподъемных механизмов, которые тоже предназначены для перемещения воды, насосный агрегат увеличивает давление или кинетическую энергию перекачиваемой жидкости.

Напор и мощность насоса

Мощность — работа, которую совершает агрегат в единицу времени.

Полезная мощность насоса – мощность, сообщаемая устройством подаваемой жидкой среде. Но прежде чем перейти к понятию мощности необходимо рассмотреть ещё два параметра: подача и напор.

Читайте также:  Как перевести мощность трансформатора

Подача насоса представляет собой количество жидкости, подаваемой в единицу времени и обозначается символом Q.

Напором насоса называется приращение механической энергии, получаемой каждым килограммом жидкости проходящей через насосный агрегат, т.е. разность удельных энергий жидкости при выходе из насоса и входе в него. Другими словами напор устройства показывает, на какую высоту в метрах насос поднимет столб воды.

И, наконец, третьим, интересующим нас параметром является мощность насоса N. Мощность обычно измеряется в киловаттах (кВт).

Полезная мощность насоса Nп – это полное приращение энергии, получаемое всем потоком в единицу времени. Чтобы рассчитать мощность насоса используется формула:

где y – удельный вес жидкости;
Q – подача насоса;
Н – напор насоса.

Потребляемая мощность насоса N – мощность потребляемая устройством – мощность подводимая на вал устройства от двигателя.

В зависимости от источника информации она ещё может называться:

Мощность на валу насоса Nв – это мощность которую затрачивает центробежный агрегат на то, чтобы покрыть потери энергии

Формула мощности на валу насоса:

Nв =Nп / η = yQH / η

где η — коэффициент полезного действия (КПД насоса)

КПД и потери мощности насоса

Вследствие потерь внутри машины только часть механической энергии, полученной им от двигателя, преобразуется в энергию потока жидкости. Степень использования энергии двигателя измеряется значением полного КПД насоса центробежного типа.

КПД насоса – коэффициент полезного действия – является одним из его основных качественных показателей и характеризует собой величину потерь энергии.

Формула кпд насоса выглядит так:

η о — объемный КПД насоса – характеризует объемные потери

η г — гидравлический КПД – характеризует гидравлические потери

η м — механический КПД – характеризует механические потери

Расчет КПД насоса показывает возможные потери:

Потери в насосе = 1 – КПД

Анализируя причины возникновения потерь в насосе, можно найти пути к повышению его КПД.

Все виды потерь делятся на три категории: гидравлические, объемные и механические.

Гидравлические потери – часть энергии, получаемой потоком от колеса насоса, затрачивается на преодоление гидравлических сопротивлений при движении потока внутри насосного агрегата, ведут к снижению высоты напора.

Объемные потери – паразитные протечки (утечки) внутри насосной части — в уплотнениях лопастного колеса и в системе уравновешивания осевого давления ведут к уменьшению подачи.

Механические потери – часть энергии, получаемой насосом от двигателя, расходуется на преодоление механического трения внутри агрегата. В машине имеют место: трение колеса и других деталей ротора о жидкость, трение в сальниках и трение в подшипниках. Механические потери ведут к падению мощности всего устройства.

Таким образом, полный КПД центробежного насоса определяется гидродинамическим совершенствованием проточной части, качеством системы внутренних уплотнений и величиной потерь на механическое трение.

Прочитайте полную статью по ссылке ниже

Источник