Меню

Обеспечение электропитания нагрузок от электросети постоянным напряжением



Разновидности источников бесперебойного питания

Потребителей электрической энергии с каждым днем становится все больше. В ней нуждаются разнообразные устройства — бытовая техника, приборы, компьютеры, серверы, промышленное оборудование и так далее. Вместе с этим, электрические сети во многих домах и коммерческих зданиях нашей страны проложены еще в советские времена и с тех пор капитально не модернизировались. Рост нагрузки иногда приводит даже к вынужденным отключениям электропитания объектов из-за перегруженности линий. Но работающие в этот момент бытовые устройства способны выйти из строя или потерять важные данные из-за внезапной потери тока. Например, набираемый на компьютере текст или иная обрабатываема информация не сохранятся.

Избежать негативных последствий помогает источник бесперебойного питания (или ИБП) — устройство, позволяющее некоторое время поддерживать работоспособность подключенных к нему потребителей. С ИБП можно безопасно сохранить данные, завершить работу прибора или дождаться восстановления централизованного энергоснабжения.

Что такое источник бесперебойного питания

Понять, что такое ИБП, можно из самого названия данного класса аппаратуры. Бесперебойный источник питания предназначен для поддержания электроснабжения соединенной с ним нагрузки. В общем случае он состоит из батареи, преобразователя питания и управляющей режимами работы логической микросхемы.

В английском языке принята аббревиатура UPS — Uninterruptable Power Supply.

Принцип функционирования исходит из самого названия «бесперебойный» — на выходе ток есть всегда (пока сохраняется заряд в аккумуляторе). На вход ИБП подается напряжение из общей электросети, часть его идет на подзарядку аккумуляторной батареи (АКБ), а другая — непосредственно на выход.

Существуют различные виды источников, каждый из которых служит своим задачам и обладает определенным функционалом. Рассмотрим их подробнее.

Разновидности

Выше было рассмотрено, что такое UPS. Но эта категория аппаратуры не однородна и делится на группы. Можно выделить следующие типы ИБП по принципу устройства и функционирования.

Резервные

Это самый популярный вариант. В обиходе встречается также англоязычное название таких ИБП Off line, или Standby. Преимущества таких устройств:

  • малое тепловыделение;
  • доступная стоимость;
  • высокий КПД источника.

Из недостатков выделим:

  • медленное переключение на питание от аккумулятора при аварийном отключении энергии;
  • плохая система фильтрации входных и выходных помех;
  • высокий процент ложных срабатываний, ведущих к циклу перехода на АКБ и обратно при небольших перепадах в сети.

Последний недостаток сильно изнашивает батарею и релейные контакты, ведя со временем к необходимости их замены.

Устройство и принцип работы

Резервные блоки управляются автоматическим коммутатором. В штатном режиме с питанием на входе коммутационное устройство соединяет нагрузку непосредственно с внешней сетью, а в автономном запитывает клиентов от батареи.

Принцип работы ИБП в Standby:

Мощность резервного блока, как правило, невелика. Эти устройства применяются в обеспечении работы отдельных компьютеров и рабочих станций, оргтехники и прочих относительно маломощных потребителей в условиях качественных электросетей.

Линейно-интерактивные

Line-Interactive версии быстро переключаются на АКБ и обратно. Кроме того, такие источники оснащаются автоматическим регулированием сетевого напряжения, благодаря чему они способны выполнять роль стабилизатора. Это снижает число ложных срабатываний: система переходит на питание от батареи только в крайних случаях. Таким образом увеличивается срок службы линейно-интерактивных UPS, хотя вместе с этим растет и стоимость.

Принцип работы

Здесь стандартное для Off line прибора коммутационное устройство дополнено ступенчатым стабилизатором и автоматической системой регуляции напряжения. Главное преимущество такого подхода — гарантированный нормальный ток на выходе даже при небольших бросках в сети. Как говорилось выше, это позволяет прибору не переключаться в автономный режим без надобности.

Но из этого следует и недостаток: хотя переключение в случае реальной пропажи тока извне происходит быстро, но все же не мгновенно (хотя и быстрее резервных). Кроме того, в сравнении с более продвинутыми онлайн блоками линейно-интерактивный стабилизирует напряжение относительно грубо.

Функционирование в нормальном режиме:

После переключения в автономный:

Линейный ИПБ достаточно прост, надежен и имеет высокий КПД. Приборы подобного типа тоже применяют для защиты компьютеров, серверов, оргтехники и так далее. Они отлично подходят для работы в связке с любым оборудованием на импульсных источниках питания. Кроме того, существует еще два подвида по методике генерации выходного напряжения в автономном состоянии:

  • с аппроксимированной синусоидой;
  • с чистым синусоидальным током.

Второй подтип способен конкурировать с «онлайновыми» источниками и применяется, кроме прочего, для организации защиты электродвигателей, насосов отопительных систем и газовых котлов.

Онлайн (On line) ИБП

Это самая дорогая категория, представители которой называются также «ИБП с двойным преобразованием напряжения». Они действуют крайне быстро, практически без задержек. Подобные источники применяют на производствах и объектах с высокой критичностью поступления электропитания.

Принцип работы

Поступающий на вход прибора переменный ток попадает в выпрямитель и преобразуется в постоянный. Далее он попадает в инвертор, который снова делает его переменным. Батарея расположена в точке связи инвертора и выпрямителя, и в аварийном режиме питание с нее идет на первый. Некоторые конфигурации включают отдельный модуль зарядного устройства, а в других подзарядка аккумулятора идет непосредственно через выпрямитель.

Как работает прибор в нормальном режиме:

На рисунках виден так называемый байпас. Это обязательный элемент UPS высокой и средней мощности. Его назначение — служить обходным устройством, пускающим ток мимо инвертора с выпрямителем. Это позволяет производить сервисное обслуживание блока питания без его отключения и отсоединения потребителей, с сохранением параметров выходного напряжения. Полезен байпас и в случаях выхода из строя компонентов основной цепи.

Такая схема обеспечивает стабильное напряжение на выходе вне зависимости от ситуации на входе. Кроме того, время переключения состояний нулевое.

ИБП постоянного тока и переменного

Большинство бесперебойников относятся к моделям переменного тока благодаря наличию инвертора. Но существуют также ИБП постоянного тока, отличающиеся отсутствующим инвертором. Самая простая схема подобного устройства:

От ИБП постоянного тока запитываются телекоммуникационные узлы, сигнализации, радиостанции и прочее электронное оборудование.

Классификация по мощности

Основная характеристика любого ИБП — мощность. Она измеряется в вольт-амперах, и для перевода ее в привычные ватты цифру следует умножить на 0.6. Для обычного ПК ИБП должен иметь мощность от 500 ВА и выше.

Выделяют следующие виды ИБП:

  • компактные бесперебойники — до 1000 ВА;
  • средние — 1–5 кВА;
  • мощные — от 5 кВА и выше.

Этот рейтинг мощности помогает определиться с выбором. В домах, квартирах и офисах обычно используют первые два типа, а для обеспечения питания серверов и производственного оборудования применяют третий вид.

Выбор ИБП

Выбирая подходящий вариант, следует ориентироваться на то, для чего нужен ИБП, и учитывать ряд дополнительных параметров:

  • характеристики запитываемых от системы бесперебойного питания устройств;
  • желаемую мощность;
  • качество электросетей;
  • бюджет.

Разумеется, идеальным решением для любой ситуации станет On line блок, но для некритичных задач вполне подойдут резервные или линейно-интерактивные.

Ключевые характеристики ИБП для выбора:

  • форма и технология генерации выходного напряжения (ИБП постоянного тока или переменного);
  • заявленная и требуемая мощность;
  • тип;
  • время автономной работы от батареи.

Обычно последнее составляет 5–7 минут, чего вполне достаточно для штатного завершения работы. Более продвинутые предоставляют до 20 минут, а самые энергоемкие способны питать нагрузку до получаса. Их используют, например, в больницах и других критически важных объектах.

Интересно: помимо ИБП, такие жизненно важные комплексы обычно обеспечиваются системами автономного питания на базе бензиновых и дизельных генераторов. А сегодня распространяются и методы аккумулирования природной энергии с помощью ветряков и солнечных батарей.

Также следует обращать внимание на дополнительные интерфейсы, возможность программного и удаленного мониторинга и управления, простоту замены аккумуляторов и доступность подключения дополнительных АКБ для увеличения периода автономности.

Задачи

Необходимо определиться, для чего нужен бесперебойник. При частых отключениях электричества дома или в офисе пригодится простой резервный, который поможет сохранить работу и корректно выключить ПК. Но следует учитывать, что стабилизатор в источниках этой разновидности отсутствует, поэтому при возможности желательно выбирать модель подороже, с качественной элементной базой.

При частых скачках напряжения желательно озаботиться наличием стабилизатора, и для этого целесообразно приобретения линейно-интерактивного. А если нет ограничений по финансам, а обеспечиваемые бесперебойным питанием потребители мощные, то оптимальным выбором станет On Line UPS. Он гарантирует мгновенное переключение и отсутствие скачков.

«Золотой серединой» можно назвать line-interactive образцы. Они обладают разумным соотношением цена-качество и предоставляют хороший уровень защиты.

Читайте также:  Стабилизатор напряжения для одного бытового прибора

Производители ИБП (APC, Powercom, IPPON, отечественный ШТИЛЬ и прочие) выпускают различные версии — от простых и маломощных на 450–600 ВА до серьезных стоечных и промышленных агрегатов на десятки киловатт. Важно понимать, что обычные «гражданские» модели не годятся для работы в связке, например, с газовыми котлами и высокомощным промышленным оборудованием; для них существуют специализированные варианты.

Заключение

Выше мы рассмотрели основные типы и разновидности источников бесперебойного питания, а также для чего нужен ИБП. Выбор правильного в каждой конкретной ситуации зависит от:

  • совокупной мощности, которую потребуется питать;
  • качества электросетей;
  • бюджета;
  • требований к дополнительным функциям и возможностям.

В домашних/офисных условиях с хорошими сетями можно рекомендовать простой резервный ИБП. Там, где качество электроснабжения хуже, стоит обратить внимание на Line Interactive образцы, именно они лидируют в пользовательском рейтинге популярности. Для высокомощной техники и оборудования с критичностью к аптайму (безостановочной работе) выбор должен пасть на полноценные On-Line версии с байпасом и двойным преобразованием. А определенные категории электроники нуждаются в ИБП постоянного тока.

Источник

Обеспечение бесперебойного электроснабжения

С каждым днем возрастают требования к надежности и сохранению работоспособности оборудования в аварийных ситуациях. Данная статья посвящена построению систем электропитания, обеспечивающих безотказное функционирование электрооборудования и рассказывает о разработанных специалистами компании ЭНЭЛТ.КОМ современных способах проектирования и конструирования устройств типа «Автоматический ввод резерва».

Жизнь современного человека невозможно представить без электричества. От надежного электроснабжения зависит работа заводов, фабрик, больниц и образовательных учреждений, объектов сельского хозяйства и ЖКХ. Электроснабжение в наши дни стало одним из краеугольных камней человеческой цивилизации.

Наверно всем знакома проблема, возникающая при отключении в доме электричества. Подобные перерывы в электроснабжении медицинских учреждений или промышленных предприятий со сложным технологическим процессом могут привести к человеческим жертвам и повреждению дорогостоящего оборудования. Поэтому для повышения надежности электроснабжения применяются устройства автоматического ввода резерва (АВР), предназначенные для автоматического переключения потребителя к другому источнику электроэнергии при пропадании основного. Чаще всего устройства АВР обеспечивают переключение между двумя независимыми линиями электроснабжения или переключение с основной линии на местный резервный источник, в качестве которого, как правило, используется дизель-генераторная установка. Для электроснабжения особо ответственных объектов могут применяться АВР для трех и четырех независимых источников.

В ПУЭ приводится классификация электроприемников по обеспечению надежности электроснабжения. Они подразделяются на I, II и III категории. К I категории относятся такие электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства. В первой категории также выделена особая группа электроприемни ков, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения основного оборудования. II группа — это электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. К III группе относятся все остальные электроприемники, не подходящие под определение I и II категорий (ПУЭ 1.2.17).

Наиболее жесткие требования предъявляются к электроприемникам I категории. Они должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания. Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника.

Устройства автоматического ввода резерва

Устройства АВР, применяемые в цепях 0,4 кВ, как правило, реализуются на следующих коммутационных аппаратах:

  • контакторах (рис. 1). Это самая простая и распространенная система. Как правило, на контакторах реализуется схема два ввода — один выход или два ввода — два выхода. В первом случае схема может быть реализована как с приоритетом на основной ввод, так и без приоритета;
  • реверсивных рубильниках с моторным приводом. Так же, как и в случае с контакторами, можно реализовать схему два ввода — один выход или взяв два реверсивных рубильника и сделать схему два ввода — два выхода («схема креста»), широко применяемую в вводных распределительных устройствах (ВРУ);
  • автоматических выключателях с моторными приводами (рис. 2) можно реализовать как стандартные схемы АВР, так и схемы с алгоритмом работы АВР любой сложности, такие, как два ввода — один выход, два ввода — два выхода, а также комбинацию нескольких вводов, в том числе и вводов от дизель-генераторных установок и нескольких выходов.

Вторичные цепи управления АВР могут выполняться как на реле, так и на программируемом логическом контроллере (рис. 3). Преимущества контроллера в том, что при его использовании значительно уменьшается количество цепей в схеме и соответственно количество переходных контактов, которые, в свою очередь, снижают надежность работы АВР. При сложном алгоритме, где много вторичных цепей управления, использование контроллера значительно экономит место в щите, заменяя собой до нескольких десятков различных реле. При сложном алгоритме применение контроллера обходится намного дешевле, чем совокупность промежуточных реле и реле времени, а также других элементов. По трудоемкости монтаж АВР на контроллере занимает намного меньше времени, чем монтаж на реле. А в случае, когда необходимо изменить алгоритм работы АВР, добавить временные задержки или дополнительные блокировки. Все это можно сделать путем изменения программы контроллера, без дополнительного монтажа или демонтажа вторичных цепей управления АВР. Однако не всегда рационально и правильно использовать микроконтроллерные схемы управления. Например, в схеме АВР два ввода — один выход на контакторах использовать контроллер экономически необоснованно из-за простоты схемы на реле. Несмотря на все положительные качества микропроцессорного контроллера и популярность его у заводов-изготовителей НКУ, служба эксплуатации электроустановок зачастую отдает предпочтение схемам управления АВР, сделанным на базе электромеханических реле и контакторов, так как они в случае ремонта являются более наглядными и понятными.

Щиты АВР не всегда работают в автоматическом режиме, периодически приходится оперировать вводами вручную на период пусконаладочных или других видов работ. Ручной режим может осуществляться как по месту расположения щита, так и удаленно от него. Таким образом, некоторые системы АВР могут включать в себя три режима управления — автоматический, местный и дистанционный. При этом наиболее обоснованно применение автоматических выключателей или реверсивных рубильников с моторными приводами, которые в отличие от контакторов могут сохранять свое включенное состояние и без внешнего питания.

При проектировании отдельно стоящих шкафов АВР необходимо уделить внимание защите отходящих линий. Нередко можно увидеть, когда на вводе в шкаф АВР устанавливаются выключатели нагрузки, а аппараты защиты находятся в вышестоящем ВРУ или ГРЩ, доступ к которым не всегда имеет эксплуатирующий персонал. Если происходит короткое замыкание на отходящей линии, вначале отключается основной ввод. Реле контроля напряжения видит, что ввод пропал, и подает сигнал на включение резервного ввода, после чего срабатывает аппарат защиты резервной линии. Решить эту проблему можно следующим путем. Если это схема два ввода — один выход, то можно поставить общий аппарат защиты на выходе; если два ввода — два выхода, то заменить выключатели нагрузки на автоматические с соблюдением селективности с вышестоящими аппаратами, либо подключать реле контроля напряжения до защитного аппарата в вышестоящем щите, что бы при аварийном отключении реле контроля видело наличие напряжения и не давало команды на включение резервного ввода.

Не лишним будет включить в схему управления АВР аварийные дополнительные контакты защитных аппаратов для блокирования включения резервной линии питания в случае короткого замыкания на отходящей линии.

В заключение хотелось бы отметить, что проектирование таких устройств, как АВР, влияющих на сохранение работоспособности объектов в нештатных ситуациях, является серьезной задачей. Эти устройства применяются в системах бесперебойного электропитания, например, больниц, клиник и других медицинских учреждений, и благодаря их работе удается сохранить жизнь человека в критических ситуациях.

Источник

Привет студент

Под системой бесперебойного электропитания постоянного тока подразумевается совокупность системы электроснабжения, УБП и токораспределительных сетей, объединенных общей целью — обеспечения надежной и бесперебойной подачи к аппаратуре электрической энергии постоянного тока требуемого качества во всех режимах работы электроустановки. Кроме того, система должна:

Читайте также:  Проверка регулятор напряжения toyota

• обеспечивать высокую степень автоматизации и единство централизованного мониторинга и управления на основе стандартных интерфейсов и программного обеспечения;

• возможность «горячей» замены аккумуляторных батарей и преобразовательных модулей в УБП без перебоев в электропитании аппаратуры;

• иметь средства отображения и индикации состояния устройств и модулей, входящих в состав системы, а также обеспечивать работу оборудования системы без постоянного присутствия эксплуатационного персонала.

Высокая надежность систем бесперебойного электропитания постоянного тока обеспечивается прежде всего за счет: высокой надежности систем электроснабжения; применения необходимого аккумуляторного резерва; высокой надежности элементов и применения избыточного количества модулей в УБП с использованием горячего резервирования их.

В УБП постоянного тока применяется, как правило, аккумуляторный резерв в двухгруппном исполнении, т. е. две аккумуляторные батареи, включенные через устройства защиты и коммутации между собой параллельно. Емкость каждой группы АБ должна обеспечивать электропитание аппаратуры, как правило, в течение по крайней менее 0,5 часа при ее максимальном потреблений. При недостаточно надежном электроснабжении объекта связи применяется аккумуляторный резерв на большее время. Так, в необслуживаемых регенерационных пунктах (НРП) применяется аккумуляторный резерв в двухгруппном исполнении с суммарным запасом емкости на время не менее 24 часов, что обеспечивает питание оборудования до устранения перерыва в электроснабжении или подъезда передвижной электростанции. Рекомендуемое значение аккумуляторного резерва для объектов связи различного назначения приводится в ВСН-332.

Широкое распространение на сети связи получили УБП постоянного тока с непрерывным подзарядом аккумуляторных батарей (по классификации ОСТ 45. 55-99 «Системы и установки питания средств связи взаимоувязанной сети связи РФ» — буферные системы питания). Особенностью таких УБП (буферных систем) является объединение в одной точке выходных выводов выпрямителей, аккумуляторной батареи АБ и питаемой нагрузки, как показано на рисунке.

В состав УБП входит:

• комплект выпрямительных устройств, состоящий из К выпрямителей (модулей);

• автоматические выключатели A1-1. A1-К, с помощью которых выпрямительные устройства подключаются к вводному щиту (щит вводной распределительный автоматизированный — ЩВРА);

• автоматические выключатели А2-1. А2-К, установленные в минусовом полюсе каждого из выпрямителей;

• двухгруппная аккумуляторная батарея (АБ № 1, АБ № 2);

• автомат (контактор) глубокого разряда АГР;

• батарейные автоматические ч выключатели АБ1, АБ2, установленные в минусовом полюсе каждой из аккумуляторных батарей;

• токовые шунты, с помощью которых осуществляется измерение тока в цепи аккумуляторных батарей Ш1 и в цепи нагрузок Ш2;

• автоматические выключатели An-1. An-m, через которые стативы аппаратуры подключаются к УБП;

• контроллер, обеспечивающий мониторинг и управление УБП.

В УБП общее число выпрямительных устройств (модулей) n вы

бирается с избыточностью по формуле

где nраб — необходимое число рабочих выпрямителей, обеспечивающее питание аппаратуры при ее максимальном потреблении и заряд аккумуляторных батарей; mрез — число резервных выпрямителей.

В нормальных условиях работы УБП все К модулей постоянно включены, т. е. избыточные модули обеспечивают горячий резерв. На рисунке показан вариант УБП с однофазными выпрямителями типа ВБВ, при этом отдельные выпрямители подключаются к различным фазам (L1. L3) трехфазной сети переменного тока через индивидуальные автоматические выключатели (A1-1. А1-К). В условиях нормального электроснабжения и исправном оборудовании электропитание аппаратуры осуществляется от стабилизирующих выпрямительных устройств. Несекционированная двухгруппная аккумуляторная батарея (АБ № 1, АБ № 2), постоянно подключенная параллельно нагрузке (выходным зажимам выпрямительных устройств), получает непрерывный подзаряд от этих же выпрямительных устройств. Значение выходного напряжения выпрямительных устройств определяется числом последовательно соединенных элементов (аккумуляторов) в каждой группе АБ и требуемым напряжением содержания одного элемента. При относительно небольшой номинальной емкости каждой группы аккумуляторной батареи (до 100 А-ч) она собирается из моноблоков по три или шесть элементов в каждом. Чаще всего эти моноблоки и все остальное оборудование СЭП размещаются в одном стативе. В случае применения кислотных аккумуляторов закрытого типа большой номинальной емкости эти аккумуляторы размещаются в отдельном помещении (аккумуляторной), имеющем приточно-вытяжную вентиляцию. В последнем случае для уменьшения индуктивности проводников (шин) подключающих к СЭП аккумуляторную батарею ее плюсовые и минусовые выводы должны располагаться как можно ближе друг к другу, для чего элементы каждой группы АБ разворачиваются как показано на рисунке (размещаются по так называемой U-образной схеме). При перерывах в электроснабжении питание аппаратуры осуществляется от разряжающейся АБ. Для того чтобы не допустить сульфатации аккумуляторов в результате недопустимо глубокого их разряда, в систему электропитания вводится контактор АГР (автомат глубокого разряда), с помощью которого осуществляется отключение АБ от аппаратуры.

При восстановлении электроснабжения выпрямительные устройства должны обеспечить питание аппаратуры и заряд АБ, без отключения ее от нагрузки. Заряд АБ может осуществляться либо в одну ступень (при напряжении, равном напряжению содержания АБ), либо в две ступени. В последнем случае выходное напряжение выпрямителей на первой ступени заряда обычно выбирается из расчета 2,35 В на один элемент АБ.

Функции, выполняемые контроллером в данной СЭП, могут быть различными в зависимости от фирмы-изготовителя аппаратуры электропитания. Так, в системе электропитания УЭПС-2, выпускаемой Юрьев-Польским заводом, контроллер выполняет следующие функции:

• обеспечивает контроль: тока АБ и тока нагрузки; напряжения на АБ и нагрузке; текущей температуры окружающей среды; емкости полученной АБ при ее заряде; емкости отданной АБ при ее разряде. На дисплей контроллера выводятся значения выше перечисленных параметров, а также текущие время и дата;

• следит за состоянием автоматических выключателей: на выходе, выпрямителей (А2-1. А2-К); аккумуляторной батареи (АБ1, АБ2) и нагрузки. (An-1. An—m); аварийных реле выпрямителей; автомата (АГР); наличием всех трех фаз питающей сети. При отключении любого из автоматов или срабатывании защиты на дисплее контроллера появляется соответствующая информация. Все аварийные ситуации сопровождаются звуковым сигналом и с помощью двух аварийных реле контроллера сигналы аварий 1-й и 2-й степени передаются в ЦТЭ (центр технической эксплуатации);

• обеспечивает дискретное изменение выходного напряжения выпрямителей (напряжения содержания АБ) при отклонении температуры окружающей среды от номинального значения (20 °С) на ±10 °С.

Во время работы контроллер непрерывно ведет протокол, записывая информацию в энергонезависимую память, поэтому при соединении контроллера с компьютером на экран монитора можно вывести все текущие параметры и состояние всех сигналов ввода и вывода в позиционном коде с указанием даты и времени возникшей аварийной ситуации. С помощью модема можно передавать текущие параметры и все сигналы по телефонной линии на любое расстояние. Обмен информацией с компьютером ведется по интерфейсу RS-232 со скоростью 9600 бит/с. Питание контроллера осуществляется непосредственно от АБ.

К достоинствам рассмотренной СЭП, называемой часто буферной модульной СЭП, следует отнести:

• высокое качество вырабатываемой электрической энергии, так как во всех режимах работы СЭП АБ остается подключенной к нагрузке;

• минимальное количество устройств, входящих в состав ЭПУ, что объясняет ее относительно низкую стоимость и высокую надежность;

• высокий КПД (практически равный КПД выпрямителей может достигать 91. 94 %) и высокий коэффициент мощности (в случае применения выпрямителей с корректором коэффициента мощности).

Буферная модульная система электропитания находит самое широкое применение для цифровой аппаратуры как автоматической и многоканальной электросвязи, так и радиосвязи.

К недостаткам данной системы обычно относят широкие пределы изменения выходного напряжения. Например, при 30 элементах в каждой группе АБ и при конечном разрядном напряжении одного элемента до 1, 70 В напряжение на выходных зажимах УБП (ЭПУ) изменяется от 30 • 1,7 = 51,1 В до 30 • 2,35 = 70,5 В. Столь широкие изменения напряжения на выходе ЭПУ недопустимы для аппаратуры электромеханических систем коммутации. Так, для координатных АТС допустимое изменение напряжения на зажимах стативов аппаратуры лежит в пределах 58. 72 В, что не позволяет выполнять ЭПУ по буферной модульной системе электропитания, являющейся наиболее простой, экономичной и надежной по сравнению с другими буферными системами электропитания.

Наибольшее применение в настоящее время для аппаратуры электромеханических систем коммутации находят ЭПУ, выполненные по буферной системе электропитания с вольтодобавочными конверторами.

В состав оборудования ЭПУ входят: вводной распределительный щит ЩВРА; два буферных выпрямительных устройства БВ1, БВ2; резервный зарядный выпрямитель РЗВ; вольтодобавочные конверторы ВДК (в количестве К модулей); обходной диод ОД; двухгруппная аккумуляторная батарея АБ1, АБ2; перекидной рубильник ПР; блок разрядных резисторов БРР; токовые шунты Ш1. Ш4; перемычки П1, П2; автоматические выключатели.

Читайте также:  Автоматическое регулирование напряжения парн

В этой системе в нормальном режиме (при наличии сети переменного тока и исправных выпрямительных устройствах) электропитание аппаратуры осуществляется от выпрямителей (БВ1, БВ2) как через так называемый обходной диод ОД, так и через выходные диоды самих ВДК. Обходной диод вводится в ЭПУ для повышения ее надежности работы.

Двухгруппная аккумуляторная батарея подключена параллельно выходу выпрямителей и находится в режиме содержания, т. е. как и в предыдущей СЭП значение выходного напряжения выпрямителей в нормальном режиме определяется числом последовательно соединенных элементов (аккумуляторов) в каждой группе АБ и необходимым напряжением содержания аккумулятора. Обычно в качестве выпрямительных устройств в этой СЭП применяются выпрямительные устройства типа БУК или БУТ, представляющие собой управляемые выпрямители с фазоимпульсным способом регулирования напряжения в цепи постоянного тока посредством либо дросселей насыщения (выпрямители БУК), либо тиристоров (выпрямители БУТ). Эти выпрямители имеют относительно низкие значения КПД и коэффициента мощности, поэтому для аппаратуры, имеющей существенные изменения потребления в течение суток (например, аппаратура координатных АТС), буферные выпрямители работают по принципу ведущий-ведомый. При малой нагрузке на ЭПУ работает только один из буферных выпрямителей — ведущий, что позволяет загрузить его на мощность, близкую к его номинальной, и тем самым иметь относительно высокие энергетические показатели ЭПУ в целом. Ведущий выпрямитель включает другой выпрямитель — ведомый только тогда, когда сам загружается на 90. 95 % своей номинальной мощности. Следовательно, в этом случае имеет место холодное резервирование выпрямителей. Максимальное число буферных выпрямителей в ЭПУ равно трем. Резервный зарядный выпрямитель автоматически включается в случае отказа любого из буферных выпрямителей.

Вольтодобавочные конверторы ВДК, подключенные к выходу выпрямителей, находятся в ждущем режиме, так как они настраиваются на стабилизацию выходного напряжения ЭПУ на уровне на 2. 3 В ниже уровня напряжения содержания АБ.

При отключении сети переменного тока питание аппаратуры осуществляется суммарным напряжением разряжающейся АБ и тем напряжением, которое появляется на выходе ВДК. Обходной диод при этом закрыт. Если каждая группа АБ содержит по 28 кислотных аккумуляторов закрытого типа, то в этом случае ВДК обычно настраиваются на стабилизацию выходного напряжения ЭПУ на уровне 60, 5 В, тогда как напряжение содержания АБ составляет 62, 5 В. С целью получения необходимой надежности бесперебойной подачи электрической энергии к аппаратуре число ВДК выбирается с избыточностью не менее чем 5/4. Принципиально ВДК позволяют наращивать выходную мощность ЭПУ за счет дополнительной установки любого числа конверторов. В настоящее время на вновь вводимых и модернизируемых ЭПУ на выходное напряжение 60 В чаще всего устанавливаются ВДК типа КУВ-12/100-2 (конвертор унифицированный вольтодобавочный на номинальный выходной ток, равный 100 А). Этот конвертор представляет собой два идентичных однотактных преобразователя с прямым включением диода, работающих на частоте 20 кГц. Причем выходные напряжения этих преобразователей сдвинуты по фазе друг относительно друга на половину периода так, что их общий выходной сглаживающий фильтр работает на частоте 40 кГц. Управление силовыми транзисторами этих преобразователей осуществляется широтно-импульсным методом.

При появлении напряжения сети переменного тока включаются все выпрямители ЭПУ (включая РЗВ) и обеспечивают электропитание аппаратуры и заряд обеих групп АБ. Заряд АБ осуществляется, как правило, в две ступени. Причем в начале заряда на первой ступени все выпрямители работают в режиме ограничения тока (стабилизации тока), так как даже частично разряженная АБ представляет для выпрямителей по существу короткое замыкание. Перевод выпрямителей на первую ступень заряда осуществляется за счет закорачивания контактами реле одного из сопротивлений выходного сравнивающего делителя выпрямителя. По мере заряда АБ напряжение на ней возрастает и при достижении значения, равного произведению числа элементов в каждой группе АБ (nэл) на 2, 35 В выпрямители переходят из режима ограничения тока в режим стабилизации напряжения на этом уровне. На начальной стадии заряда АБ, пока напряжение на АБ меньше 60, 5 В, ВДК находятся в работе, обеспечивая стабилизацию выходного напряжения ЭПУ на уровне 60, 5 В. После перехода выпрямителей в режим стабилизации напряжения зарядный ток по мере заряда АБ начинает уменьшаться. Перевод выпрямителей с первой ступени на вторую осуществляется тогда, когда уменьшающийся зарядный ток спадает до значения в 50. 100 раз большего значения тока содержания АБ. Слежение за значением зарядного тока АБ осуществляется специальными устройствами индикации тока УИТ, подключаемыми к токовым шунтам Ш3, Ш4.

Для того чтобы обеспечить возможность проведения контрольных и уравнительных зарядов каждой из групп АБ, РЗВ подключается к АБ через перекидной рубильник ПР. Перемычки П1 или П2 устанавливаются для проведения контрольных разрядов одной из. групп АБ.

Рассмотренная СЭП в отличие от предыдущей требует больших капитальных затрат, что объясняется необходимостью установки ВДК и увеличения емкости аккумуляторной батареи с целью компенсации потерь в этих ВДК. Кроме того, коэффициент полезного действия ЭПУ, выполненной по этой системе (в нормальном ее режиме работы), также оказывается несколько ниже за счет дополнительных потерь в обходных диодах ОД и мощности, потребляемой ВДК, находящимися в ждущем режиме. Следует также отметить, что в отличие от буферной модульной СЭП качество электрической энергии, вырабатываемой ЭПУ в этой СЭП при отсутствии сети переменного тока, определяется не только параметрами АБ и токораспределительной сети постоянного тока, но и внутренним сопротивлением ВДК. В связи с этим при импульсном изменении тока нагрузки и подключении к ЭПУ нелинейных нагрузок эта СЭП может в отдельных случаях терять устойчивость, что приводит к резкому увеличению пульсации на выходе ЭПУ и выходу из строя аппаратуры. Следует отметить, что по мере перехода с электромеханических систем коммутации на цифровые необходимость в применении буферных СЭП с вольтодобавочными конверторами отпадает.

Общим недостатком рассмотренных УБП (ЭПУ) является необходимость применения на каждый номинал выходного напряжения постоянного тока отдельную АБ, т. е. в УБП на выходные напряжения —24, —48 и —60 В следует устанавливать три АБ, каждая из которых рассчитана на свой номинал. Возможно использование на объекте одной АБ (на один номинал выходного напряжения), а другие номиналы выходного напряжения получать с помощью дополнительно устанавливаемых преобразователей. Но такое решение приводит к снижению КПД системы в целом, а также к снижению его надёжности.

Децентрализация СЭП. В настоящее время все более широкое применение в практике электропитания аппаратуры связи находят децентрализованные системы электропитания с радиальными токораспределительными сетями ТРС постоянного тока. В случае радиальной ТРС от УБП к каждому стативу оборудования прокладывается индивидуальная пара токонесущих проводников (от плюсового и минусового полюсов УБП). Применение децентрализованной системы позволяет размещать УБП в непосредственной близости к питаемой аппаратуре, что значительно сокращает длину токораспределительной сети постоянного тока и тем самым снижает потери в ней, позволяя на 3. 5 % повысить КПД СЭП в целом, а также уменьшает помехи и динамические изменения напряжения на зажимах аппаратуры связи. С другой стороны, децентрализация ограничивает зону влияния повреждений в оборудовании самого УБП на функционирование аппаратуры связи, что приводит к увеличению живучести сети связи.

Важным экономическим фактором, отличающим децентрализованную систему, является возможность снижения первоначальных капитальных затрат при ее применении и ускорения отдачи вложенных средств.

Таким образом, упрощается и становится более гибкой схема наращивания мощности оборудования электропитания и проведения реконструкции, повышается ремонтнопригодность, снижаются доля избыточности в установленной мощности и первоначальные капитальные затраты.

Все это приводит к тому, что при более высокой надежности децентрализованных систем их суммарная стоимость становится ниже по отношению к централизованным, при повышении качества выходных характеристик.

Следует отметить еще одну важную особенность децентрализованной системы, которая заключается в возможности создания универсальных УБП. В этих УБП конструктивно могут быть объединены устройства постоянного и переменного тока, а также устройства с различными выходными напряжениями.

Используемая литература: Электропитание устройств и систем телекоммуникаций:
Учебное пособие для вузов / В. М. Бушуев, В. А. Демянский,
Л. Ф. Захаров и др. — М.: Горячая линия—Телеком, 2009. —
384 с.: ил.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Источник