Меню

Направление тока в проводниках совпадает рисунок

Направление тока и линий его магнитного поля. Правило буравчика

Урок 34. Физика 9 класс

Доступ к видеоуроку ограничен

Конспект урока «Направление тока и линий его магнитного поля. Правило буравчика»

Исследования Ампера…

принадлежат к числу самых

блестящих работ, которые

проведены когда-либо в науке.

Джеймса Клерка Максвелла

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды.

Для наглядного представления магнитного поля пользуются магнитными линиями Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.

Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно свидетельствует о том, что магнитных зарядов, подобных электрическим, в природе нет.

За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.

Теперь разберём, от чего зависит направление линий магнитного поля тока более подробно.

Известно, что для получения спектра магнитного поля прямого проводника с током, его можно пропустить через лист картона, а на картон насыпать железные опилки. Под действием магнитного поля железные опилки располагаются по концентрическим окружностям. Поместим вдоль линий магнитного поля магнитные стрелки.

На рисунке показано расположение магнитных стрелок вокруг проводника с током, перпендикулярного плоскости чертежа. Если изменить направление тока в проводнике, то можно увидеть, что изменение направления тока приводит к повороту всех магнитных стрелок на 180 0 . Причем оси стрелок располагаются по касательной к магнитным линиям.

Т.о. можно сделать вывод, что направление линий магнитного поля будет зависеть от направления тока в проводнике.

Эта связь может быть выражена простым правилом, которое называют правилом буравчика (или правилом правого винта).

Правило буравчика заключается в следующем: если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитного поля тока.

С помощью правила буравчика по направлению тока можно определить направление линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля — направление тока, создающего это поле.

Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки.

Соленоид — это катушка цилиндрической формы из проволоки, витки которой намотаны вплотную друг к другу в одном направлении, а длина катушки значительно больше радиуса витка. Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось.

На рисунке видно, что внутри соленоида линии магнитного поля каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление. Поэтому, при достаточно плотной намотке соленоида, противоположно направленные участки линий магнитного поля соседних витков взаимно уничтожаться, а одинаково направленные участки сольются в общую линию.

Изучение этого поля с помощью железных опилок показало, что внутри соленоида магнитные линии поля представляют собой прямые, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида.

Зная направление тока в витке, полюсы соленоида можно определить с помощью правила правой руки: если обхватить соленоид, ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Правило правой руки можно применять и для определения направления линий магнитного поля в центре одиночного витка с током.

Из курса физики 8 класса известно, что на всякий проводник с током, помещенный в магнитное поле и не совпадающий с его магнитными линиями, это поле действует с некоторой силой.

Наличие такой силы можно показать с помощью установки. Проволочная трехсторонняя рамка ABCD подвешена на крюках так, что может свободно отклоняться от вертикали.

Сторона ВС находится в области наиболее сильного поля дугообразного магнита, располагаясь между его полюсами. Рамка присоединена к источнику тока последовательно с реостатом и ключом. При замыкании ключа в цепи возникает электрический ток, и сторона ВС втягивается в пространство между полюсами.

Если убрать магнит, то при замыкании цепи проводник ВС двигаться не будет. Значит, со стороны магнитного поля на проводник с током действует некоторая сила, отклоняющая его от первоначального положения.

Таким образом, магнитное поле создается электрическим током и обнаруживается по его действию на электрический ток.

Если изменить направление тока в цепи, поменяв местами провода в гнездах изолирующего штатива, то, при этом, изменится и направление движения проводника, а значит, и направление действующей на него силы.

Направление силы изменится и в том случае, если, не меняя направления тока, поменять местами полюсы магнита (т. е. изменить направление линий магнитного поля).

Следовательно, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

Направление силы, действующей на проводник с током в магнитном поле, можно определить, пользуясь правилом левой руки, которое заключается в следующем: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

Пользуясь правилом левой руки, следует помнить, что за направление тока во внешней части электрической цепи (т. е. вне источника тока) принимается направление от положительного полюса источника тока к отрицательному. Другими словами, четыре пальца левой руки должны быть направлены против движения электронов в электрической цепи.

С помощью правила левой руки можно определить направление силы, с которой магнитное поле действует на отдельно взятую движущуюся в нем частицу, как положительно, так и отрицательно заряженную. Для наиболее простого случая, когда частица движется в плоскости, перпендикулярной магнитным линиям, это правило формулируется следующим образом: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по движению положительно заряженной частицы (или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей на частицу силы.

Следует отметить, что сила действия магнитного поля на проводник с током или движущуюся заряженную частицу равна нулю, если направление тока в проводнике или скорость частицы совпадают с линией магнитной индукции или параллельны ей.

Основные выводы:

– Направление линий магнитного поля будет зависеть от направления тока в проводнике.

– Эта связь может быть выражена с помощью правила буравчика (или правила правого винта): если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитного поля тока.

Читайте также:  Формулы регулирования скорости двигателя постоянного тока

– Для определения направления линий магнитного поля соленоида удобнее пользоваться правилом правой руки: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

– Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле. Направление этой силы можно определить с помощью правила левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

Источник

Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Читайте также:  Что такое блуждающие токи в водопроводных трубах в квартире

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Читайте также:  Как определить эквивалентное сопротивление цепи переменного тока

Источник



§ 44. Направление тока и направление линий его магнитного поля —

Вопросы.

1. Как на опыте можно показать связь между направлением тока в проводнике и направлением линии его магнитного поля?

Если поменять направление тока в проводнике на противоположное все магнитные стрелки, расположенные в магнитном поле, созданном этим проводником, тоже повернутся на 180°.

2. Сформулируйте правило буравчика.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля, созданного этим током.

3. Что можно определить, используя правило буравчика?

Используя правило буравчика можно определить направление линий магнитного поля, зная направление тока или наоборот.

4. Сформулируйте правило правой руки для соленоида.

Если представить, что правая рука это соляноид, и расположить её так, чтобы ток выходил из кончиков пальцев, то большой палец укажет направление линий магнитной индукции.

5. Что можно определить с помощью правила правой руки?

С помощью правила правой руки можно определить направление магнитных линий, зная направление тока и наоборот.

1. На рисунке 99 изображен проволочный прямоугольник, направление тока в нем показано стрелками. Перечертите рисунок в тетрадь и, пользуясь правилом буравчика, начертите вокруг каждой из его четырех сторон по одной магнитной линии, указав стрелкой ее направление.



2. На рисунке 100 показаны линии магнитного поля вокруг проводников с током. Проводники изображены кружочками. Перечертите рисунок в тетрадь и условными знаками обозначьте направления токов в проводниках, используя для этого правило буравчика.

3. Через катушку, внутри которой находится стальной стержень (рис. 101), пропускают ток указанного направления. Определите полюсы у полученного электромагнита. Как можно изменить положение полюсов у этого электромагнита?

По правилу правой руки получаем, что у изображенного на рисунке 101 электромагнита слева южный полюс S, а справа северный N. Чтобы изменить положение полюсов на противоположное нужно сделать так, чтобы ток шел в обратном направлении.

4. Определите направление тока в катушке и полюсы у источника тока (рис. 102), если при прохождении тока в катушке возникают указанные на рисунке магнитные полюсы.

В катушке ток идет справа налево, от плюса к минусу.

5. Направление тока в витках обмотки подковообразного электромагнита показано стрелками (рис. 103). Определите полюсы электромагнита.

Если подковообразный магнит расположен разрезом к нам, то слева будет S, справа N, если разрезом от нас, то наоборот.

6. Параллельные провода, по которым текут токи одного направления, притягиваются, а параллельные пучки электронов, движущихся в одном направлении, отталкиваются. В каком из этих случаев взаимодействие обусловлено электрическими силами, а в каком — магнитными? Почему вы так считаете?

Так как заряды одного знака всегда отталкиваются, то отталкивание пучков электронов обусловлено электрическими (кулоновскими) силами, а притяжение проводников обусловлено магнитными силами.

Источник

§ 35. Направление тока и направление линий его магнитного поля

На рисунке 94 показано расположение магнитных стрелок вокруг проводника с током, расположенного перпендикулярно плоскости чертежа. Из рисунка видно, что изменение направления тока приводит к повороту всех магнитных стрелок на 180°. Причём в обоих случаях оси стрелок располагаются по касательным к магнитным линиям.

Направление линий магнитного поля, созданного проводником с током, зависит от направления тока в проводнике

Рис. 94. Направление линий магнитного поля, созданного проводником с током, зависит от направления тока в проводнике

Следовательно, направление линий магнитного поля тока зависит от направления тока в проводнике.

Эта связь может быть выражена правилом буравчика (или правилом правого винта), которое заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока (рис. 95, 96).

Применение правила буравчика: проводник с током расположен перпендикулярно плоскости чертежа

Рис. 95. Применение правила буравчика: проводник с током расположен перпендикулярно плоскости чертежа

Применение правила буравчика: проводник с током расположен в плоскости чертежа

Рис. 96. Применение правила буравчика: проводник с током расположен в плоскости чертежа

С помощью правила буравчика по направлению тока можно определить направление линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля — направление тока, создающего это поле.

Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки. Это правило формулируется так: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида (рис. 97).

Определение направления линий магнитного поля внутри соленоида

Рис. 97. Определение направления линий магнитного поля внутри соленоида

Вы уже знаете, что магнитное поле соленоида (см. рис. 90) подобно полю постоянного полосового магнита (см. рис. 88). Соленоид, как и магнит, имеет полюсы: тот конец соленоида, из которого магнитные линии выходят, является северным полюсом, а тот, в который входят, — южным.

Зная направление тока в соленоиде, по правилу правой руки можно определить направление магнитных линий поля внутри него, а значит, и его магнитные полюсы.

И наоборот, по направлению магнитных линий поля внутри соленоида или расположению его полюсов можно определить направление тока в витках соленоида.

Правило правой руки можно применять и для определения направления линий магнитного поля в центре витка с током.

Вопросы

  1. Опишите опыт, подтверждающий связь между направлением тока в проводнике и направлением линий магнитного поля, созданного проводником.
  2. Сформулируйте правило буравчика.
  3. Что можно определить, используя правило буравчика?
  4. Сформулируйте правило правой руки.
  5. Что можно определить с помощью правила правой руки?

Упражнение 32

  1. На рисунке 98 изображён проволочный прямоугольник, направление тока в нём показано стрелками. Перечертите рисунок в тетрадь и, пользуясь правилом буравчика, начертите вокруг каждой из его четырёх сторон по одной магнитной линии, указав стрелкой её направление.

Рис. 98

Рис. 98
Определите направление тока в катушке и полюсы источника тока (рис. 99), если при прохождении тока в катушке возникают указанные на рисунке магнитные полюсы.

Рис. 99

Рис. 99
Направление тока в витках обмотки подковообразного электромагнита показано стрелками (рис. 100). Определите полюсы электромагнита.

Рис. 100

Рис. 100

  • Параллельные провода, по которым текут токи одного направления, притягиваются, а параллельные пучки электронов, движущихся в одном направлении, отталкиваются. В каком из этих случаев взаимодействие обусловлено электрическими силами, а в каком — магнитными? Почему вы так считаете?
  • Источник

    Adblock
    detector