Меню

Мощность переменного тока однофазного короткого замыкания

Короткое замыкание

Что такое короткое замыкание

Короткое замыкание (КЗ, англ. short curcuit) — незапланированное соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.

Определение КЗ из “Элементарного учебника физики” Ландсберга

короткое замыкание определение

В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:

закон Ома формула

I – сила тока в цепи, А

U – напряжение, В

R – сопротивление, Ом

Давайте рассмотрим вот такую схему

Короткое замыкание

Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.

А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ

Короткое замыкание

Что будет дальше, если мы замкнем контакты ключа SA?

короткое замыкание

В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления – меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:

Короткое замыкание

Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.

Закон Джоуля-Ленца

Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи

закон джоуля ленца формула

Q – это количество теплоты, которое выделяется на сопротивлении нагрузки Rн . Выражается в Джоулях. 1 Джоуль = 1 Ватт х секунда.

I – сила тока в этой цепи, А

Rн – сопротивление нагрузки, Ом

t – период времени, в течение которого происходит выделение теплоты на нагрузке Rн , секунды

Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.

То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары.

Существуют еще запланированные и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.

короткое замыкание сварочный ток

Основные причины короткого замыкания

Все многообразие причин возникновения коротких замыканий можно свести к следующим:

  • Нарушение изоляции
  • Внешние воздействия
  • Перегрузка сети

Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.

Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть “кривой” электромонтаж, либо несоблюдение техники электробезопасности.

Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока. Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение. Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.

Ток короткого замыкания

Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.

Для источников ЭДС ток короткого замыкания может быть вычислен по формуле

ток короткого замыкания

Iкз – это ток короткого замыкания, А

E – ЭДС источника питания, В

Rвнутр. – внутреннее сопротивление источника ЭДС, Ом

Более подробно про ЭДС и внутреннее сопротивление читайте здесь.

Ниже на рисунке как раз изображен такой источник ЭДС в виде автомобильного аккумулятора с замкнутыми клеммами

короткое замыкание источник ЭДС

Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.

Виды коротких замыканий

В цепи постоянного тока

В этом случае КЗ бывает, как правило, между напряжением питания, которое чаще всего обозначается как “+”, и общим проводом схемы, который соединяют с “-“. Последствия такого КЗ зависят от мощности источника питания постоянного тока. Если в автомобиле голый плюсовой провод заденет корпус автомобиля, который соединяется с “минусом” аккумулятора, то провода начнут плавится и гореть как спички, при условии если не сработает предохранитель, либо вместо него уже стоит “жучок” – самопальный предохранитель. Ниже на фото вы можете увидеть результат такого КЗ.

короткое замыкание сгорел автомобиль

В цепи переменного тока

Трехфазное замыкание

короткое замыкание трехфазное

Это когда три фазных провода коротнули между собой.

Трехфазное на землю

короткое замыкание на землю

Здесь все три фазы соединены между собой, да еще и замкнуты на землю

Двухфазное

короткое замыкание двухфазное

В этом случае любые две фазы замкнуты между собой

Двухфазное на землю

короткое замыкание двухфазное на землю

Любые две фазы замкнуты между собой, да еще и замкнуты на землю

Однофазное на землю

короткое замыкание однофазное на землю

Однофазное на ноль

короткое замыкание фаза ноль

Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.

В трехфазных сетях наиболее часто происходит однофазное замыкание на землю – 60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.

Читайте также:  Глубина проникновения токов в медь

В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.

Последствия короткого замыкания

Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.

Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.

Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.

последствия короткого замыкания

Меры, исключающие короткое замыкание

Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.

Вот такие предохранители используются в цепях с малыми токами

стеклянный предохранитель

вот такие плавкие предохранители вы можете увидеть в автомобилях

автомобильный предохранитель

А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов

промышленный плавкий предохранитель

Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа – трехфазный

однофазный автомат трехфазный автомат

Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.

В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:

  • Плавкие предохранители (применяются в том числе в бытовых электроприборах).
  • Автоматические выключатели.
  • Стабилизаторы напряжения.
  • Устройства дифференциального тока.

Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.

В высоковольтных сетях защита чаще обеспечивается:

  • Устройствами релейной защиты и другим отключающим оборудованием.
  • Понижающими трансформаторами.
  • Распараллеливанием цепей.
  • Токоограничивающими реакторами.

Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.

Источник

Ток короткого замыкания однофазных и трехфазных сетей

В электрических сетях периодически возникают различные аварийные ситуации. Среди них, наибольшую опасность представляет ток короткого замыкания, формула которого используется при расчетах и проектировании. Последствия аварийного режима достаточно серьезные – выходят из строя сами сети, а также подключенные приборы и оборудование. Все это причиняет большой материальный ущерб. Проводимые расчеты, в том числе и на ударный ток КЗ требуются, в первую очередь, для того, чтобы обеспечить надежную защиту на электрифицированном объекте.

  1. Расчет токов короткого замыкания
  2. Изменения тока в процессе короткого замыкания
  3. Короткие замыкания в однофазных сетях
  4. Расчет токов КЗ для трехфазных сетей
  5. Ток КЗ в сетях с неограниченной мощностью

Расчет токов короткого замыкания

Для выполнения подобного расчета тока привлекаются квалифицированные специалисты. Они не только разрабатывают теоретическую сторону, но и отвечают за последующую эксплуатацию представленных схем. Здесь слишком много специфических особенностей, поэтому начинающие электрики должны хорошо представлять себе не только саму природу электричества, но и свойства проводников, диэлектриков, особенности изоляции и другие важные вопросы.

Ток короткого замыкания однофазных и трехфазных сетей

Результаты рассчитанные в домашних условиях, должны обязательно проверяться специалистами. Все расчеты, касающиеся короткого замыкания, выполняются с использованием специальных формул.

Трёхфазное короткое замыкание в электрических сетях до 1000В определяется с учетом следующих особенностей:

  • Трехфазная система по умолчанию является симметричной.
  • Трансформаторное питание считается неизменным, сравнимым с его номиналом.
  • Возникновение короткого замыкания считается в момент максимального значения силы тока.
  • Значение ЭДС принимается для источников питания, расположенных на большом расстоянии от места КЗ.

Кроме того, определяя параметры короткого замыкания, следует правильно вычислить общее сопротивление проводников, с привязкой к единому значению мощности. Обычные формулы могут привести к ошибкам из-за разных номинальных напряжений на отдельных участках в момент КЗ. Базовая мощность существенно упрощает расчеты и повышает их точность.

Изменения тока в процессе короткого замыкания

За период КЗ ток подвергается различным изменениям. В самом начале он увеличивается, далее – затухает до определенного значения, а потом автоматический регулятор возбуждения доводит его до стабильной величины.

Период времени, требуемый для изменения параметров тока короткого замыкания – ТКЗ, получил название переходного процесса. По окончании этого промежутка и до момента, когда КЗ будет отключено, наблюдается стабильный аварийный режим. Величина тока в различные промежутки времени необходима при выборе уставок для защитной аппаратуры, проверке динамической и термической устойчивости электрооборудования.

В каждой сети подключены нагрузки с установленными индуктивными сопротивлениями. Они препятствуют мгновенным изменениям тока, поэтому его величина меняется не скачкообразно, а нарастает постепенно, в соответствии с законом физики. Анализ и расчет тока в переходный период значительно упрощается, если его условно разделить на две составные части – апериодическую и периодическую.

  1. Первая – апериодическая часть ia – обладает постоянным знаком, появляется в момент КЗ и довольно быстро понижается до нулевой отметки.
  2. Вторая часть – периодическая составляющая тока КЗ Inmo – в первый момент времени представляет собой начальный ток короткого замыкания. Именно он используется при выборе уставок и проверке чувствительности защитных устройств. Данная сила тока короткого замыкания получила название сверхпереходного тока, поскольку при его расчетах схема замещения дополняется сверхпереходными ЭДС и сопротивлением генератора.

По завершении переходного периода периодический ток считается установившимся. Величина полного тока включает в себя апериодическую и периодическую составляющие на любом отрезке переходного периода. Показатель его максимального мгновенного значения представляет собой ударный ток короткого замыкания, определяемый при проверке динамической устойчивости электрооборудования.

Короткие замыкания в однофазных сетях

При выполнении расчетов энергосистем однофазного тока допускаются вычисления, производимые в упрощенной форме. Приборы и оборудование в таких сетях не потребляют большого количества электроэнергии, поэтому надежная защита может быть обеспечена обычным автоматическим выключателем, рассчитанным на ток срабатывания 25 ампер.

Читайте также:  Сила магнитного поля катушки с током зависит от выберите ответ погодных условий

Ток однофазного короткого замыкания вычисляется в следующем порядке:

  • Определение параметров трансформатора или реактора, питающих сеть, в том числе их электродвижущей силы.
  • Устанавливаются технические характеристики проводников, используемых в сети.
  • Разветвленную электрическую схему необходимо упростить, разбив на отдельные участки.
  • Вычисление полного сопротивления между фазой и нулем.
  • Определения полных сопротивлений трансформатора или других питающих устройств, если такие данные отсутствуют в технической документации.
  • Все полученные значения вставляются в формулу.

В каждом случае сила тока короткого замыкания и формула, по которой рассчитывается однофазный процесс, показана на рисунке.

В ней Uf является фазным напряжением, Zt – сопротивлением трансформатора в момент КЗ. Zc будет сопротивлением между фазой и нулем, а Ik – однофазным током КЗ.

Использование данной формулы позволяет определить ток однофазного КЗ и его параметры в соответствующих цепях с величиной погрешности в пределах 10%. Полученных данных вполне достаточно, чтобы рассчитать правильную и эффективную защиту сети. Основной проблемой при получении исходных данных считается определение величины Zc.

При наличии данных о параметрах проводников и значениях переходных сопротивлений, определить сопротивление между фазой и нулем вполне возможно по формуле:

Здесь rf и rn являются, соответственно, активными сопротивлениями фазного и нулевого проводов, измеряемыми в Омах, ra представляет собой сумму активных сопротивлений контактов в цепочке фаза-ноль (Ом), xf” и xn” – внутренние индуктивные сопротивления фазного и нулевого проводов (Ом), x’ – является внешним индуктивным сопротивлением в цепочке фаза-ноль (Ом).

Полученное значение подставляется в предыдущую формулу, после чего определение тока КЗ уже не составит особого труда. Главное – соблюдать правильную последовательность действий при выполнении расчетов.

Расчет токов КЗ для трехфазных сетей

Для того чтобы определить ток трехфазного короткого замыкания в соответствующих сетях, следует обязательно учитывать специфику возникновения и развития этого процесса. Прежде всего, это индуктивность, возникающая в замкнутом проводнике, из-за чего ток трехфазного КЗ изменяется не мгновенно, а нарастает постепенно в соответствии с определенными законами.

Точность производимых вычислений зависит в первую очередь от расчетов основных величин, вставляемых в формулу. С этой целью используются дополнительные формулы или специальное программное обеспечение, выполняющее сложнейшие вычислительные операции за очень короткое время.

Если же расчеты в трехфазных сетях выполняются ручным способом, в таких случаях нужные результаты про ток КЗ формула, приведенная ниже, позволяет определить с достаточно точными показателями:

  • Iкз = Uc/(√3рез) = Uc /(√3*(Хсист + Хвн)), в которой Хвн является сопротивлением между шинами и точкой КЗ, Хсист – это сопротивление во всей системе относительно шин источника напряжения, Uc – напряжение на шинах в данной системе.

При отсутствии какого-то из показателей, его значение определяется с использованием дополнительных формул или программ. Если же расчеты трехфазного КЗ производятся для сложных сетей с большим количеством разветвлений, в этом случае основная схема преобразуется в схему замещения, где присутствует лишь один источник электроэнергии и одно сопротивление.

Сам процесс упрощения производится в следующем порядке:

  • Складываются все показатели сопротивлений, подключенных параллельно в данной цепи.
  • Далее суммируются все сопротивления, подключенные последовательно.
  • Результирующее сопротивление Хрез определяется как сумма всех подключенных параллельных и последовательных сопротивлений.

Расчеты токов двухфазного короткого замыкания выполняются с учетом отсутствия у них симметричности. У них нет нуля, а присутствую токи, протекающие в прямом и обратном направлении. Таким образом, ток двухфазного КЗ рассчитывается последовательно, по отдельным формулам, используемым для каждого показателя.

Ток КЗ в сетях с неограниченной мощностью

Довольно часто мощность источника электроэнергии значительно превышает величину суммарной мощности всех подключенных потребителей. В таких случаях при решении задачи, как найти значение короткого замыкания, величина напряжения считается условно неизменной.

Наличие подобных условий приводит к бесконечному показателю мощности, а сопротивление проводников принимает нулевое значение. Они используются для расчета только в тех случаях, когда место короткого замыкания располагается на большом расстоянии от источника напряжения, а величина результирующего сопротивления цепи многократно превышает показатели сопротивления всей системы.

В сетях с неограниченной мощностью, вычислить ток короткого замыкания позволяет следующая формула: Ik = Ib/Xрез, в которой Ib является базисным током, а Xрез – результирующим сопротивлением сети. При наличии исходных данных, очень быстро найдем достаточно точный конечный результат.

Как рассчитать ток короткого замыкания

Опыт короткого замыкания трансформатора

Ударный ток короткого замыкания

Режим короткого замыкания

Апериодическая составляющая тока короткого замыкания

Источник



Пример расчета тока однофазного КЗ

В данной статье, я буду рассматривать пример расчета тока однофазного КЗ (ОКЗ) используя в первом варианте справочные таблицы представленные в [Л1], а во втором варианте справочные таблицы из [Л2].

С методами определения величины тока однофазного КЗ и с приведенными справочными таблицами для всех элементов короткозамкнутой цепи, можно ознакомиться в статье: «Расчет токов однофазного кз при питании от энергосистемы».

  • масляный трансформатор напряжением 6/0,4 кВ, мощностью 1000 кВА со схемой соединения обмоток – Y/Yо.
  • от трансформатора до ВРУ используется кабель марки ААШвУ 3х95 длиной 120 м.
  • от ВРУ до двигателя используется кабель марки ААШвУ 3х95+1х35 длиной 150 м.

Рис.1 - Расчетная схема сети эл. двигателя

Рис.1 — Расчетная схема сети эл. двигателя

1. Расчет тока однофазного КЗ будет выполнятся по формуле приближенного метода при большой мощности питающей энергосистемы (Хс Формула определения тока однофазного кз при большой мощности питающей энергосистемы приближенным методом

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2. По таблице 2 [Л1, с 6] определяем сопротивление трансформатора при вторичном напряжении 400/230 В, Zт/3 = 0,027 Ом.

Таблица 2 - Расчетные сопротивления масляных трансформаторов по ГОСТ 11920-73 и ГОСТ 12022-76 при вторичном напряжении 400/230 В

3. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

Определяем Zпт.уд. вариант 1

где:

  • Zпт.уд.1 = 0,729 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 12 [Л1, с 16];
  • l1 = 0,120 км – длина участка №1.
  • Zпт.уд.2 = 0,661 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 13 [Л1, с 16];
  • l2 = 0,150 км – длина участка №2.

Таблицы 11 - 13 - со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4)- жильных кабелей с различной изоляцией и при температуре жилы +65(+80)

4. Определяем ток однофазного КЗ:

Определяем Iк тока однофазного КЗ, вариант 1

Обращаю ваше вниманию, что при определении величины тока однофазного КЗ приближенным методом, сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас [Л2, с 40].

Читайте также:  Пусковой ток акб varta

Определим ток однофазного КЗ по справочным таблицам из [Л2].

1. По таблице 2.4 [Л2, с 29] определяем сопротивление трансформатора Zт/3 = 33,6 мОм.

Таблица 2.4 - Активные и интуктивные сопротивления 6(10)/0,4 кВ

2. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

Определяем Zпт.уд. вариант 2

  • Zпт.уд.1 = 0,83 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 2.11 [Л2, с 41];
  • l1 = 120 м – длина участка №1.
  • Zпт.уд.2 = 1,45 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 2.10 [Л2, с 41].

Обращаю ваше внимание, что в данной таблице значение Zпт.уд. приводится для кабелей независимо от материала оболочки кабеля.
Если же посмотреть [Л1, с 16], то в таблице 13 для 4-жильных кабелей с алюминиевой оболочкой 3х95+1х35, Zпт.уд. = 0,661 мОм/м. Принимаю Zпт.уд.2 = 1,45 мОм/м, для того чтобы было наглядно видно, на сколько будет отличатся значение тока однофазного КЗ от расчета по «Варианту I». На практике же, лучше совмещать справочные таблицы из [Л1 и Л2].

Таблицы 2.10, 2.11 - Полное удельное сопротивление петли фаза-нуль для кабелей

3. Определяем ток однофазного КЗ:

Определяем Iк тока однофазного КЗ, вариант 2

Как видно из результатов расчета (вариант I: Iк = 1028 А; вариант II: Iк = 627 А), полученные значения тока однофазного КЗ почти в 2 раза отличаются. По каким справочным таблицам выполнять расчет тока однофазного КЗ, уже решайте сами, в любом случае это приближенный метод, поэтому, если нужны точные значения тока однофазного КЗ, следует рассчитывать по формуле представленной в ГОСТ 28249-93.

1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Источник

Расчет тока короткого замыкания в сети 0,4 кВ

Введение

В соответствии с пунктом 3.1.8. ПУЭ электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения при этом указано что защита должна проверяться по отношению наименьшего расчетного тока короткого замыкания (далее — тока КЗ) к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя. (Подробнее о выборе защиты от токов короткого замыкания читайте статью: Расчет электрической сети и выбор аппаратов защиты)

В сетях 0,4 кВ с глухозаземленной нейтралью наименьшим током КЗ является ток однофазного короткого замыкания методика расчета которого и приведена в данной статье.

Основные понятия и принцип расчета

Сама формула расчета тока короткого замыкания проста, она выходит из закона ома для полной цепи и имеет следующий вид:

  • Uф — фазное напряжение сети (230 Вольт);
  • Zф-о — полное сопротивление петли (цепи) фаза-нуль в Омах.

Что такое петля фаза-нуль (фаза-ноль)? Это электрическая цепь состоящая из фазного и нулевого проводников, а так же обмотки трансформатора к которым они подключены.

петля фаза-нуль

В свою очередь сопротивление данной электрической цепи и называется сопротивлением петли фаза нуль.

Как известно есть три типа сопротивлений: активное (R), реактивное (X) и полное (Z). Для расчета тока короткого замыкания необходимо использовать полное сопротивление определить которое можно из треугольника сопротивлений:

сопротивление петли фаза-ноль

Примечание: Сумма полных сопротивлений нулевого и фазного проводников называется полным сопротивлением питающей линии.

Рассчитать точное сопротивление петли фаза-нуль довольно сложно, т.к. на ее сопротивление влияет множество различных факторов, начиная с переходных сопротивлений контактных соединений и сопротивлений внутренних элементов аппаратов защиты, заканчивая температурой окружающей среды. Поэтому для практических расчетов используются упрощенные методики расчета токов КЗ одна из которых и приведена ниже.

Справочно: Расчетным путем ток короткого замыкания определяется, как правило, только для новых и реконструируемых электроустановок на этапе проектирования электрической сети и выбора аппаратов ее защиты. В действующих электроустановках наиболее целесообразно определять ток короткого замыкания путем проведения соответствующих измерений (путем непосредственного измерения тока КЗ, либо путем косвенного измерения, т.е. измерения сопротивления петли-фаза-нуль и последующего расчета тока КЗ).

Методика расчета тока кз

1) Определяем полное сопротивление питающей линии до точки короткого замыкания:

  • Rл — Активное сопротивление линии, Ом;
  • Xл — Реактивное сопротивление линии, Ом;

Примечание: Расчет производится для каждого участка линии с различным сечением и/или материалом проводника, с последующим суммированием сопротивлений всех участков (Zпл=Zл1+Zл2+…+Zлn).

Активное сопротивление линии определяется по формуле:

  • Lфо — Сумма длин фазного и нулевого проводника линии, Ом;
  • p — Удельное сопротивление проводника (для алюминия — 0,028, для меди – 0,0175), Ом* мм 2 /м;
  • S — Сечение проводника, мм 2 .

Примечание: формула приведена с учетом, что сечения и материал фазного и нулевого проводников линии одинаковы, в противном случае расчет необходимо выполнять по данной формуле для каждого из проводников индивидуально с последующим суммированием их сопротивлений.

Реактивное сопротивление линии определяется по формуле:

2) Определяем сопротивление питающего трансформатора

Сопротивление трансформатора зависит от множества факторов, таких как мощность, конструкция трансформатора и главным образом схема соединения его обмоток. Для упрощенного расчета сопротивление трансформатора при однофазном кз (Zтр(1)) можно принять из следующей таблицы:

сопротивление питающего трансформатора при однофазном коротком замыкании

3) Рассчитываем ток короткого замыкания

Ток однофазного короткого замыкания определяем по следующей формуле:

  • Uф — Фазное напряжение сети в Вольтах (для сетей 0,4кВ принимается равным 230 Вольт);
  • Zтр(1) — Сопротивление питающего трансформатора при однофазном кз в Омах (из таблицы выше);
  • Z пл — Полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки короткого замыкания в Омах.

    Пример расчета тока кз

    Для примера возьмем следующую упрощенную однолинейную схему:

    пример однолинейной схемы для расчета тока кз

    1. Определяем полное сопротивление питающей линии до точки короткого замыкания

    Как видно из схемы всего имеется три участка сети, расчет сопротивления необходимо производить для каждого в отдельности, после чего сложить рассчитанные сопротивления всех участков.

    Таким образом полное сопротивление питающей линии (цепи фаза-ноль) от питающего трансформатора до точки кз составит:

    1. Определяем сопротивление трансформатора

    Как видно из схемы источником питания является трансформатор на 160 кВА, со схемой соединения обмоток «звезда — звезда с выведенной нейтралью». Определяем сопротивление трансформатора по таблице выше:

    1. Рассчитываем ток короткого замыкания

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Источник

Мощность переменного тока однофазного короткого замыкания



Что такое ток короткого замыкания?

Ток короткого замыкания (short-circuit current) — это сверхток в электрической цепи при коротком замыкании (определение согласно ГОСТ 30331.1-2013). В некоторой нормативной документации используется сокращение «ток КЗ».

Харечко Ю.В. конкретизировал понятие «ток короткого замыкания» следующим образом [2]:

« Ток короткого замыкания представляет собой одну из разновидностей сверхтока. В отличие от тока перегрузки ток короткого замыкания обычно возникает в условиях повреждений, когда повреждается изоляция каких-либо проводящих частей, находящихся под разными электрическими потенциалами, и между ними возникает электрический контакт с пренебрежимо малым полным сопротивлением. В условиях повреждений также возможно замыкание частей, находящихся под напряжением, на открытые и сторонние проводящие части, которые в электроустановках зданий с типами заземления системы TN-S, TN-C-S и TN-C имеют электрическую связь с заземленной нейтралью источника питания. »

« Токи замыкания на землю в системах TN, протекающие по фазным проводникам и защитным или PEN-проводникам, будут сопоставимы с токами однофазных коротких замыканий, которые протекают по фазным проводникам и нейтральным или PEN-проводникам. »

Ток короткого замыкания может также возникнуть в нормальных условиях, когда отсутствуют повреждения, из-за ошибочного соединения проводящих частей с разными электрическими потенциалами, допущенного при монтаже и эксплуатации электроустановки здания. Если ошибочно выполнено электрическое соединение, например, фазного и нейтрального проводников какой-то электрической цепи, то при ее включении по обоим проводникам будет протекать ток однофазного короткого замыкания.

В своей книге [2] Харечко Ю.В. также отразил некоторые особенности, которые касаются понятия «ток короткого замыкания»:

« Величина тока короткого замыкания может многократно (на несколько порядков) превышать значение тока перегрузки и тем более значение номинального тока. Даже кратковременное его воздействие на какие-либо элементы электроустановки зданий может вызвать их механическое повреждение, перегрев, возгорание и, как следствие, явиться причиной пожара в здании. Поэтому электрооборудование в электроустановках зданий, прежде всего – проводники электрических цепей, должно быть надежно защищено от токов короткого замыкания с помощью устройств защиты от сверхтока – автоматических выключателей и плавких предохранителей. »

« Токи короткого замыкания определяют при проектировании электроустановок зданий и учитывают при выборе характеристик электрооборудования. Максимальные токи короткого замыкания всегда соотносят с предельными сверхтоками, которые способны отключить коммутационные устройства и устройства защиты от сверхтока, а также могут пропустить через себя некоторые виды электрооборудования. Минимальные токи короткого замыкания используют для проверки способности устройств защиты от сверхтока выполнить их отключение в течение нормируемого или предпочтительного промежутка времени. »

О методике расчета токов короткого замыкания.

Методики расчета токов короткого замыкания изложены в ГОСТ 28249-93, в стандартах и технических отчетах комплекса МЭК 60909. ГОСТ 28249-93 распространяется на трехфазные электроустановки переменного тока напряжением до 1 кВ, присоединенные к энергосистеме или к автономным источникам электрической энергии. Стандарт устанавливает общую методику расчета токов симметричных и несимметричных коротких замыканий в начальный и произвольный моменты времени с учетом параметров синхронных и асинхронных машин, трансформаторов, реакторов, кабельных и воздушных линий электропередачи, а также шинопроводов.

Комплекс МЭК 60909 применяют для расчета токов короткого замыкания в низковольтных и высоковольтных электроустановках переменного тока частотой 50 или 60 Гц. Однако, как указано в стандарте МЭК 60909-0, электрические системы с напряжением 550 кВ и более, имеющие протяженные линии электропередачи, требуют специального рассмотрения.

Источник

Расчет токов короткого замыкания для начинающих электриков

При проектировании любой энергетической системы специально подготовленные инженеры электрики с помощью технических справочников, таблиц, графиков и компьютерных программ выполняют ее анализ на работу схемы в различных режимах, включая:

2. номинальную нагрузку;

3. аварийные ситуации.

Особую опасность представляет третий случай, когда в сети возникают неисправности, способные повредить оборудование. Чаще всего они связаны с «металлическим» закорачиванием питающей цепи, когда между разными потенциалами подводимого напряжения подключаются случайным образом электрические сопротивления размерностью в доли Ома.

Такие режимы называют токами коротких замыканий или сокращенно «КЗ». Они возникают при:

сбоях в работе автоматики и защит;

ошибках обслуживающего персонала;

повреждениях оборудования из-за технического старения;

стихийных воздействиях природных явлений;

Читайте также:  Пусковой ток акб varta

диверсиях или действиях вандалов.

Токи коротких замыканий по своей величине значительно превышают номинальные нагрузки, под которые создается электрическая схема. Поэтому они просто выжигают слабые места в оборудовании, разрушают его, вызывают пожары.

Осциллограмма переменных токов

Осциллограмма постоянных токов

Кроме термического разрушения они еще обладают динамическим действием. Его проявление хорошо показывает видеоролик:

Чтобы при эксплуатации исключить развитие подобных аварий с ними начинают бороться еще на стадии создания проекта электрического оборудования. Для этого теоретически вычисляют возможности возникновения токов коротких замыканий и их величины.

Эти данные используются для дальнейшего создания проекта и выбора силовых элементов и защитных устройств схемы. С ними же продолжают постоянно работать и при эксплуатации оборудования.

Токи возможных коротких замыканий рассчитывают теоретическими методами с разной степенью точности, допустимой для надежного создания защит.

Какие электрические процессы заложены в основу расчета токов короткого замыкания

Первоначально заострим внимание на том, что любой вид приложенного напряжения, включая постоянное, переменное синусоидальное, импульсное или любое другое случайное создает токи аварий, которые повторяют образ этой формы или изменяют ее в зависимости от приложенного сопротивления и действия побочных факторов. Все это приходится предусматривать проектировщикам и учитывать в своих расчетах.

Оценку возникновения м действия токов коротких замыканий позволяют выполнить:

величина силовой характеристики мощности, приложенной от источника напряжения;

структура используемой электрической схемы электроустановки;

значение полного приложенного сопротивления к источнику.

Действие закона Ома

За основу расчета коротких замыканий взят принцип, определяющий, что силу тока можно вычислить по величине приложенного напряжения, если поделить ее на значение подключенного сопротивления.

Он же действует и при расчете номинальных нагрузок. Разница лишь в том, что:

во время оптимальной работы электрической схемы напряжение и сопротивление практически стабилизированы и изменяются незначительно в пределах рабочих технических нормативов;

при авариях процесс происходит стихийно случайным образом. Но его можно предусмотреть, просчитать разработанными методиками.

Мощность источника напряжения

С ее помощью оценивают силовую энергетическую возможность совершения разрушительной работы токами коротких замыканий, анализируют длительность их протекания, величину.

Электрическая мощность переменного тока

Рассмотрим пример, когда один и тот же кусок медного провода сечением полтора квадратных мм и длиной в полметра вначале подключили напрямую на клеммы батарейки «Крона», а через некоторое время вставили в контакты фазы и нуля бытовой розетки.

В первом случае через провод и источник напряжения потечет ток короткого замыкания, который разогреет батарейку до такого состояния, что повредит ее работоспособность. Мощности источника не хватит на то, чтобы сжечь подключенную перемычку и разорвать цепь.

Во втором случае сработают автоматические защиты. Допустим, что они все неисправны и заклинили. Тогда ток короткого замыкания пройдет через домашнюю проводку, достигнет вводного щитка в квартиру, подъезд, здание и по кабельной или воздушной линии электропередач дойдет до питающей трансформаторной подстанции.

В итоге к обмотке трансформатора подключается довольно протяженная цепь с большим количеством проводов, кабелей и мест их соединения. Они значительно увеличат электрическое сопротивление нашей закоротки. Но даже в этом случае высока вероятность того, что она не выдержит приложенной мощности и просто сгорит.

Конфигурация электрической схемы

При питании потребителей к ним подводится напряжение разными способами, например:

через потенциалы плюсового и минусового выводов источника постоянного напряжения;

фазой и нулем однофазной бытовой сети 220 вольт;

трехфазной схемой 0,4 кВ.

В каждом из этих случаев могут произойти нарушения изоляции в различных местах, что приведет к протеканию через них токов короткого замыкания. Только для трехфазной цепи переменного тока возможны короткие замыкания между:

всеми тремя фазами одновременно — называется трехфазным;

двумя любыми фазами между собой — междуфазное;

любой фазой и нулем — однофазное;

фазой и землей — однофазное на землю;

двумя фазами и землей — двухфазное на землю;

тремя фазами и землей — трехфазное на землю.

Виды КЗ в трехфазной сети

При создании проекта электроснабжения оборудования все эти режимы требуется просчитать и учесть.

Влияние электрического сопротивления цепи

Протяженность магистрали от источника напряжения до места образования короткого замыкания имеет определенное электрическое сопротивление. Его величина ограничивает токи короткого замыкания. Наличие обмоток трансформаторов, дросселей, катушек, обкладок конденсаторов добавляют индуктивные и емкостные сопротивления, формирующие апериодические составляющие, искажающие симметричную форму основных гармоник.

Читайте также:  Сила магнитного поля катушки с током зависит от выберите ответ погодных условий

Существующие методики расчета токов короткого замыкания позволяют их вычислить с достаточной для практики точностью по заранее подготовленной информации. Реальное электрическое сопротивление уже собранной схемы можно измерить по методике петли «фаза-ноль». Оно позволяет уточнить расчет, внести коррективы в выбор защит.

Замер сопротивления петли фаза-ноль

Основные документы по расчету токов коротких замыканий

1. Методика выполнения расчета токов КЗ

Она хорошо изложена в книге А. В. Беляева “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, выпущенной Энергоатомиздат в 1988 году. Информация занимает 171 страницу.

последовательность расчета токов КЗ;

учет токоограничивающего действия электрической дуги на месте образования повреждения;

принципы выбора защитной аппаратуры по значениям рассчитанных токов.

В книге публикуется справочная информация по:

автоматическим выключателям и предохранителям с анализом характеристик их защитных свойств;

выбору кабелей и аппаратуры, включая установки защиты электродвигателей, силовых сборок, вводных устройств генераторов и трансформаторов;

недостаткам защит отдельных видов автоматических выключателей;

особенностям применения выносных релейных защит;

примерам решения проектных задач.

2. Руководящие указания РД 153—34.0—20.527—98

Этот документ определяет:

методики расчетов токов КЗ симметричных и несимметричных режимов в электроустановках с напряжением до и выше 1 кВ;

способы проверок электрических аппаратов и проводников на термическую и электродинамическую стойкость;

методы испытания коммутационной способности электрических аппаратов.

Указания не охватывают вопросы расчета токов КЗ применительно к устройствам РЗА со специфическими условиями эксплуатации.

3. ГОСТ 28249-93

Документ описывает короткие замыкания, возникающие в электроустановках переменного тока и методику их расчета для систем с напряжением до 1 кВ. Он действует с 1 января 1995 года на территориях Беларуси, Кыргызстана. Молдовы, России, Таджикистана, Туркменистана и Украины.

Государственный стандарт определяет общие методы расчетов токов КЗ в начальный и любой произвольный временной момент для электроустановок с синхронными и асинхронными машинами, реакторами и трансформаторами, воздушными и кабельными ЛЭП, шинопроводами, узлами сложной комплексной нагрузки.

Технические нормативы проектирования электроустановок определены действующими государственными стандартами и согласованы Межгосударственным Советом по вопросам стандартизации, метрологии, сертификации.

Скачать ГОСТ 28249-93 (2003). Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ можно здесь: ГОСТ по расчету токов КЗ

Очередность действий проектировщика для расчета токов короткого замыкания

Первоначально следует подготовить необходимые для анализа сведения, а затем провести из расчет. После монтажа оборудования к процессе ввода его в работу и при эксплуатации проверяется правильность выбора и работоспособность защит.

Сбор исходных данных

Любую схему можно привести к упрощенному виду, когда она состоит из двух частей:

1. источника напряжения. Для сети 0,4 кВ его роль исполняет вторичная обмотка силового трансформатора;

2. питающей линии электропередачи.

Под них собираются необходимые характеристики.

Данные трансформатора для расчета токов КЗ

величину напряжения короткого замыкания (%) — Uкз;

потери короткого замыкания (кВт) — Рк;

номинальные напряжения на обмотках высокой и низкой стороны (кВ. В) — Uвн, Uнн;

фазное напряжение на обмотке низкой стороны (В) — Еф;

номинальную мощность (кВА) — Sнт;

полное сопротивление током однофазного КЗ (мОм) — Zт.

Данные питающей линии для расчета токов КЗ

К ним относятся:

марки и количество кабелей с указанием материала и сечения жил;

общая протяженность трассы (м) — L;

индуктивное сопротивление (мОм/м) — X0;

полное сопротивление для петли фаза-ноль (мОм/м) — Zпт.

Эти сведения для трансформатора и линии сосредоточены в справочниках. Там же берут ударный коэффициент Куд.

Последовательность расчета

По найденным характеристикам вычисляют для:

трансформатора — активное и индуктивное сопротивление (мОм) — Rт, Хт;

линии — активное, индуктивное и полное сопротивление (мОм).

Эти данные позволяют рассчитать общее активное и индуктивное сопротивление (мОм). А на их основе можно определить полное сопротивление схемы (мОм) и токи:

трехфазного замыкания и ударный (кА);

однофазного КЗ (кА).

По величинам последних вычисленных токов и подбирают автоматические выключатели и другие защитные устройства для потребителей.

Расчет токов короткого замыкания проектировщики могут выполнять вручную по формулам, справочным таблицам и графикам или с помощью специальных компьютерных программ.

Читайте также:  Трансформатор тока тти 2500

Компьютерная программа расчетов токов КЗ

На реальном энергетическом оборудовании, введенном в эксплуатацию, все токи, включая номинальные и коротких замыканий, записываются автоматическими осциллографами.

Снятие осциллограммы токов

Такие осциллограммы позволяют анализировать ход протекания аварийных режимов, правильность работы силового оборудования и защитных устройств. По ним принимают действенные меры для повышения надежности работы потребителей электрической схемы.

Источник

Пример расчета тока однофазного КЗ

В данной статье, я буду рассматривать пример расчета тока однофазного КЗ (ОКЗ) используя в первом варианте справочные таблицы представленные в [Л1], а во втором варианте справочные таблицы из [Л2].

С методами определения величины тока однофазного КЗ и с приведенными справочными таблицами для всех элементов короткозамкнутой цепи, можно ознакомиться в статье: «Расчет токов однофазного кз при питании от энергосистемы».

  • масляный трансформатор напряжением 6/0,4 кВ, мощностью 1000 кВА со схемой соединения обмоток – Y/Yо.
  • от трансформатора до ВРУ используется кабель марки ААШвУ 3х95 длиной 120 м.
  • от ВРУ до двигателя используется кабель марки ААШвУ 3х95+1х35 длиной 150 м.

Рис.1 - Расчетная схема сети эл. двигателя

Рис.1 — Расчетная схема сети эл. двигателя

1. Расчет тока однофазного КЗ будет выполнятся по формуле приближенного метода при большой мощности питающей энергосистемы (Хс Формула определения тока однофазного кз при большой мощности питающей энергосистемы приближенным методом

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2. По таблице 2 [Л1, с 6] определяем сопротивление трансформатора при вторичном напряжении 400/230 В, Zт/3 = 0,027 Ом.

Таблица 2 - Расчетные сопротивления масляных трансформаторов по ГОСТ 11920-73 и ГОСТ 12022-76 при вторичном напряжении 400/230 В

3. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

Определяем Zпт.уд. вариант 1

где:

  • Zпт.уд.1 = 0,729 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 12 [Л1, с 16];
  • l1 = 0,120 км – длина участка №1.
  • Zпт.уд.2 = 0,661 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 13 [Л1, с 16];
  • l2 = 0,150 км – длина участка №2.

Таблицы 11 - 13 - со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4)- жильных кабелей с различной изоляцией и при температуре жилы +65(+80)

4. Определяем ток однофазного КЗ:

Определяем Iк тока однофазного КЗ, вариант 1

Обращаю ваше вниманию, что при определении величины тока однофазного КЗ приближенным методом, сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас [Л2, с 40].

Определим ток однофазного КЗ по справочным таблицам из [Л2].

1. По таблице 2.4 [Л2, с 29] определяем сопротивление трансформатора Zт/3 = 33,6 мОм.

Таблица 2.4 - Активные и интуктивные сопротивления 6(10)/0,4 кВ

2. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:

Определяем Zпт.уд. вариант 2

  • Zпт.уд.1 = 0,83 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 2.11 [Л2, с 41];
  • l1 = 120 м – длина участка №1.
  • Zпт.уд.2 = 1,45 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 2.10 [Л2, с 41].

Обращаю ваше внимание, что в данной таблице значение Zпт.уд. приводится для кабелей независимо от материала оболочки кабеля.
Если же посмотреть [Л1, с 16], то в таблице 13 для 4-жильных кабелей с алюминиевой оболочкой 3х95+1х35, Zпт.уд. = 0,661 мОм/м. Принимаю Zпт.уд.2 = 1,45 мОм/м, для того чтобы было наглядно видно, на сколько будет отличатся значение тока однофазного КЗ от расчета по «Варианту I». На практике же, лучше совмещать справочные таблицы из [Л1 и Л2].

Таблицы 2.10, 2.11 - Полное удельное сопротивление петли фаза-нуль для кабелей

3. Определяем ток однофазного КЗ:

Определяем Iк тока однофазного КЗ, вариант 2

Как видно из результатов расчета (вариант I: Iк = 1028 А; вариант II: Iк = 627 А), полученные значения тока однофазного КЗ почти в 2 раза отличаются. По каким справочным таблицам выполнять расчет тока однофазного КЗ, уже решайте сами, в любом случае это приближенный метод, поэтому, если нужны точные значения тока однофазного КЗ, следует рассчитывать по формуле представленной в ГОСТ 28249-93.

1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Источник

Adblock
detector