Меню

Мощность параллельного колебательного контура



В помощь изучающему электронику

Формулы, вычисления, .

— Колебательный контур —

Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка «Массовой радиобиблиотеки» изданная в 1964 году, как перевод книги О. Кронегера в ГДР в 1961 году. Не смотря на такую ее древность, она является моей настольной книгой (наряду с несколькими другими справочниками). Думаю время над такими книгами не властно, потому что основы физики, электро и радиотехники (электроники) незыблемы и вечны.

Основные зависимости

Rое = 6,28 f L Q = 159 10 3 Q / f C (1);

rое = 6,28 f L / Q = 159 10 3 / C Q (2);

Последовательный колебательный контур

L индуктивность, гн,

L индуктивность, мгн,

L индуктивность, мкгн,

b абсолютная полоса пропускания, заключенная между двумя точками резонансной кривой, взятыми на уровне 0,707 от максимальной амплитуды.

d — потери колебательного контура,

L индуктивность, гн;

Параллельный колебательный контур

Rs активное сопротивление потерь, ом;

L индуктивность, гн;

С емкость, ф.

d коэффициент потерь контура.

ΔС — изменение емкости, ф.

L индуктивность, гн;

С емкость, ф;

Rs последовательное сопротивление потерь, ом;

Rl — последовательное сопротивление потерь катушки, необходимое для получения требуемой полосы пропускания, ом

В случае использования нескольких колебательных контуров с одинаковой резонансной частотой, например в многоконтурных приемниках прямого усиления, ширина полосы пропускания уменьшается (по сравнению с полосой одиночного контура) В двухконтурном приемнике она составляет 0,642 b, а в трехконтурном0,51 b
Изменять частоту контура в пределах определенного диапазона можно посредством конденсатора переменной емкости.

Смакс — конечная емкость конденсатора, пф;

Смин — начальная емкость конденсатора, пф.

Снач — начальная емкость колебательного контура, пф;

Скон— конечная емкость колебательного контура, пф.

fмакс — максимальная частота, кгц;

Снач — начальная емкость, пф

Источник

Параллельный колебательный контур

Содержание

  1. Параллельный колебательный контур
  2. Идеальный колебательный контур
  3. Реальный колебательный контур
  4. Принцип работы параллельного колебательного контура
  5. Резонанс параллельного колебательного контура
  6. Формула резонанса
  7. Как найти резонанс параллельного колебательного контура на практике
  8. Что происходит на резонансной частоте в параллельном колебательном контуре
  9. Резонанс токов
  10. Добротность параллельного колебательного контура
  11. Применение параллельного колебательного контура

В прошлой статье мы с вами рассмотрели последовательный колебательный контур, так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы рассмотрим параллельный колебательный контур, в котором катушка и конденсатор соединяются параллельно.

Параллельный колебательный контур

Идеальный колебательный контур

На схеме идеальный колебательный контур выглядит вот так:

L – индуктивность, Генри

С – емкость, Фарад

Реальный колебательный контур

В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:

R – это сопротивление потерь контура, Ом

L – индуктивность, Генри

С – емкость, Фарад

Принцип работы параллельного колебательного контура

Давайте подцепим к генератору частоты реальный параллельный колебательный контур

Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь сопротивлением потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока.

Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.

Реактивное сопротивление катушки выражается по формуле

а конденсатора по формуле

Более подробно про это можно прочитать в этой статье.

Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки X L и конденсатора X C уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.

Резонанс параллельного колебательного контура

Очень интересное свойство параллельного колебательного контура заключается в том, что при Х L = Х С у нас колебательный контур войдет в резонанс. При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току. Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:

R рез – это сопротивление контура на резонансной частоте

L – собственно сама индуктивность катушки

C – собственно сама емкость конденсатора

R – сопротивление потерь катушки

Формула резонанса

Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:

F – это резонансная частота контура, Герцы

L – индуктивность катушки, Генри

С – емкость конденсатора, Фарады

Как найти резонанс параллельного колебательного контура на практике

Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.

Итак, реальная схема этого контура будет вот такая:

Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:

Читайте также:  Увеличение мощности пневматического винтовка

На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.

Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура R кон.

Упрощенная схема будет выглядеть вот так:

Интересно, на что похожа эта схема? Не на делитель ли напряжения? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление R кон будет максимальным, вследствие чего у нас на этом сопротивлении “упадет” бОльшее напряжение.

Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.

Как вы видите, на колебательном контуре “падает” малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление R кон

Добавляем частоту. 11,4 Килогерца

Как вы видите, напряжение на контуре поднялось. Это значит, что сопротивление колебательного контура увеличилось.

Добавляем еще частоту. 50 Килогерц

Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.

Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.

И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.

Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:

Снова добавляем частоту и видим, что напряжение стало еще меньше:

Что происходит на резонансной частоте в параллельном колебательном контуре

Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.

Что здесь у нас произошло?

Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое высокое сопротивление R кон . На этой частоте Х L = Х С. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:

Резонанс токов

Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:

Чему будет равняться резонансный ток I рез ? Считаем по закону Ома:

I рез = U ген /R рез , где R рез = L/CR.

Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток I кон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.

Добротность параллельного колебательного контура

Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз. Q – это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила тока в контуре I кон больше сила тока в общей цепи I рез

Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:

R – сопротивление потерь на катушке, Ом

L – индуктивность, Гн

Применение параллельного колебательного контура

Параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные резонансные фильтры.

Источник

ПАРАЛЛЕЛЬНЫЙ КОЛЕБАТЕЛЬНЫЙ

КОНТУР

5.1. Схема параллельного колебательного контура

Параллельный колебательный контур представляет собой параллельное соединение катушки индуктивности и конденсатора , принципиальная схема которого показана на рис. 5.1а.

На рис. 5.1б показана эквивалентная схема параллельного колебательного контура, в которую включено сопротивление потерь катушки индуктивности, сопротивление потерь конденсатора в большинстве случаев можно не учитывать.

В ряде случаев применяется параллельная эквивалентная схема, показанная на рис. 5.1в, в этом случае сопротивление не является сопротивлением потерь контура, хотя и зависит от него. Параллельная модель рис. 5.1в удобна при расчете проводимости цепи.

5.2. Входное сопротивление и проводимость

В дальнейшем в основном будем использовать модель параллельного колебательного контура вида рис. 5.1б. Ее комплексное сопротивление определяется выражением

В окрестности частоты , равной

пренебрегая в числителе (5.1) величиной , получим

Как видно, целесообразно перейти к координатам обобщенной расстройки, рассмотренным в подразделе 3.6,

— добротность параллельного колебательного контура, равная

— характеристическое сопротивление контура,

В результате из (5.3) получим выражение для комплексного сопротивления контура в координатах обобщенной расстройки

из которого нетрудно найти модуль , аргумент , активную и реактивную составляющие,

(получите эти выражения самостоятельно). Графики этих функций показаны на рис. 5.2.

Читайте также:  Какая должна быть мощность у газовой плиты

На частоте (5.2) сопротивление контура максимально, чисто активно и равно

графики на рис. 5.2 построены при кОм (сравните с сопротивлением последовательного контура, которое минимально на этой частоте). При отклонении от частоты сопротивление резко падает, появляется реактивная компонента. При сопротивление контура имеет индуктивный характер, а при — емкостный, этот же результат вытекает и из анализа фазовой характеристики на рис. 5.2б.

Анализ проводимости контура, в том числе и для модели рис. 5.1в, проведите самостоятельно.

5.3. Напряжение и токи в контуре

Подключим к параллельному колебательному контуру идеальный источник тока с комплексной амплитудой , как показано на рис. 5.3, и определим напряжение на параллельных ветвях контура ,

Токи и в реактивных ветвях контура в окрестности частоты , то есть при условии , соответст-

Рис. 5.3 венно равны

Амплитуда и начальная фаза напряжения на контуре определяются выражениями

где — начальная фаза тока источника. Зависимости амплитуды напряжения и сдвига фаз между этим напряжением и током источника от обобщенной расстройки показаны на рис. 5.4 при кОм и мА.

Как видно, кривая имеет экстремальный характер,

однако резонанс напряжения в параллельном колебательном контуре отсутствует, так как напряжение на контуре всегда равно напряжению на источнике тока.

Токи и в реактивных ветвях контура определяются формулами (5.14) и (5.15), из которых следует

Эти равенства нарушают первый закон Кирхгофа

то есть выражения (5.14) и (5.15) являются приближенными(как и все вычисления в координатах обобщенной расстройки).

Амплитуды этих токов одинаковы и равны

а начальные фазы и определяются соотношениями

Как видно, токи в реактивных ветвях контура противофазны. Зависимости амплитуд токов в реактивных ветвях контура и сдвигов фаз и между токами в реактивных ветвях и током источника от обобщенной расстройки показаны на рис. 5.5 при мГн, нФ, Ом и мА.

Как видно, токи и резко возрастают в окрестности точки (или частоты ) по сравнению с амплитудой тока источника, то есть в параллельном колебательном контуре имеет место резонанс токов в реактивных ветвях.

Частота (5.2) является резонансной частотой контура, на которой

то есть резонансный ток в реактивных ветвях контура в раз больше тока источника.

Так как токи и противофазны, то вводят в рассмотрение кольцевой замкнутый ток в контуре , как показано на рис. 5.6. Он совпадает по направлению с током и поэтому равен

Амплитуда контурного тока

равна (5.20), а начальная фаза (5.22), соответствующие графики показаны на рис. 5.5. Резонансный контурный ток в раз больше тока источника.

5.4. Вторичные параметры колебательного контура

Параллельный колебательный контур (как и последовательный) полностью описывается своими первичными параметрами , и . На практике широко используются вторичные параметры:

резонансная частота контура

— характеристическое сопротивление контура

— добротность контура

5.5. Частотные характеристики

Частотные характеристики параллельного колебательного контура представляют собой зависимость от частоты характеристик комплексного коэффициента передачи по току

где и — комплексные амплитуды токов реактивных ветвей контура, — комплексная амплитуда тока источника.

Рассмотрим комплексный коэффициент передачи тока емкости (аналогичный анализ проведите самостоятельно). Из (5.30) с учетом (5.14) получим

Для АЧХ и ФЧХ контура получим

где обобщенная расстройка определяется выражением (3.38)

Частотные характеристики параллельного колебательного контура в координатах вида (5.33) и (5.34) численно совпадают с аналогичными характеристиками для последовательного контура (3.42) и (3.43). Эти зависимости показаны на рис. 5.7 при .

Те же графики в координатах абсолютной расстройки оказаны на рис. 5.8 при и рад/с.

Максимум АЧХ равен и достигается при , то есть на резонансной частоте . При отклонении частоты от коэффициент передачи резко падает, то есть параллельный колебательный контур может использоваться как узкополосный частотный фильтр.

Влияние параметров контура на форму частотных характеристик было рассмотрено при анализе последовательного колебательного контура (повторите его самостоятельно)

5.6. Полоса пропускания и коэффициент

Так как выражение для АЧХ (5.33) параллельного колебательного контура совпадает с аналогичным выражением для последовательного контура, то формулы для полосы пропускания и коэффициента прямоугольности этих контуров совпадают (получите эти результаты еще раз самостоятельно),

5.7. Влияние сопротивления источника сигнала и

нагрузки на резонансные свойства контура

Рассмотрим параллельный колебательный контур на рис. 5.9а с реальным источником тока ( — внутреннее сопротивление источника) и параллельно подключенной нагрузкой .

Параллельное соединение и заменяется эквивалентным сопротивлением , как показано на рис. 5.9б, а в этой схеме необходимо преобразовать параллельное соединение и ветви в эквивалентное последовательное соединение в окрестности резонансной частоты контура . Найдем сопротивление параллельного соединения,

выделим его действительную и мнимую составляющие и приравняем их составляющим эквивалентного последовательного соединения элементов (рис. 5.9в) вида

В результате получим

Допустим, что сопротивление много больше величин и , тогда в окрестности резонансной частоты можно записать

(повторите эти преобразования самостоятельно).

Как видно из (5.42), подключение внутреннего сопротивления источника сигнала и нагрузки приводит к повышению эквивалентных потерь в контуре, эквивалентная добротность которого при этом равна

Полученное выражение совпадает с аналогичной формулой, учитывающей влияние нагрузки в последовательном колебательном контуре (проверьте это самостоятельно).

Читайте также:  Мотор колесо мощностью 2000

Подключение реального источника сигнала и нагрузки снижает эквивалентную добротность контура. Чтобы добротность упала незначительно, необходимо выполнение условий

Например, если , то , то есть добротность значительно снижается, а если , то .

Реализовать условие (5.45) достаточно сложно, а часто и невозможно и требуются использование неполного включения контура к источнику сигнала и нагрузке, как показано на рис. 5.10. Можно показать, что эквивалентная добротность в этом случае равна

— коэффициенты включения в контур источника сигнала и нагрузки. Их значения выбираются достаточно малыми (например, 0,1), что существенно ослабляет влияние на добротности сопротивлений и ,.которые должны Рис. 5.10

что значительно проще реализовать, чем (5.45).

Колебательные контуры вида рис. 5.10 называют сложными параллельными колебательными контурами. Помимо резонанса токов на частоте , равной

имеется резонанс напряжений в последовательном колебательном контуре на частоте

Рабочим является интервал частот в окрестности , в котором сопротивление контура в точках подключения источника сигнала в координатах обобщенной расстройки равно

5.8. Расчеты цепей с параллельными колебательными

Если в составе цепи имеется параллельный колебательный контур, то ее расчет целесообразно проводить в координатах обобщенной расстройки. Рассмотрим цепь, показанную на рис. 5.11 при Ом, мГн, нФ, кОм, в нее

включен источник гармонических колебаний с комплексной амплитудой В и частотой рад/с.

В состав цепи входит параллельный колебатель- Рис. 5.11

ный контур , его

резонансная частота , добротность и обобщенная расстройка соответственно равны

Вычислим комплексное сопротивление контура в координатах обобщенной расстройки,

Тогда ток равен

а напряжение на емкости —

Рассмотрим цепь со сложным параллельным колебательным контуром, показанную на рис. 5.12. приняв мГн, мГн и оставив остальные исходные данные теми же, что и для цепи на рис. 5.11. Коэффициент включения источника в контур равен

а общая индуктивность контура соответственно мГн, при этом резонансная частота, добротность и обобщенная расстройка будут такими же, как и в предыдущей задаче.

Сопротивление контура в точках подключения источника определяется выражением

а напряжение на емкости соответственно

5.9. Моделирование параллельного колебательного

Проведем схемотехническое моделирование цепи, показанной на рис. 5.11 в пакете MicroCAP7, схема модели представлена на рис. 5.13, частота источника 157,6 кГц ( рад/с).

В верхней части рис. 5.14 показаны полученные в результате моделирования временные реализации напряжений в узлах 1 (пунктир) и 2, которые на рис 5.13 отмечены цифрами в кружках. В его нижней части показаны временные диаграммы токов в неразветвленной части контура — тока источника (кривая с маленькой амплитудой) и токов в емкостной (пунктир) и индуктивной ветвях контура. На начальном интервале времени 60 мкс (60u) наблюдается переходной процесс, а затем колебания устанавливаются и можно проводить измерения (убедитесь самостоятельно, что результаты расчета и моделирования совпадают).

Как видно, токи в индуктивности и емкости противофазны, их амплитуды одинаковы и много больше амплитуды тока источника, то есть в параллельном колебательном контуре имеет место резонанс токов.

На рис. 5.15 приведены частотные характеристики цепи по передаче напряжения от узла 1 к узлу 2, по которым нетрудно определить напряжение на емкости (в узле 2).

5.10. Применение параллельного колебательного

Параллельный колебательный контур чаще всего используется как элемент частотного фильтра аналогично последовательному контуру (пример будет рассмотрен далее), или как нагрузка активного элемента (транзистора) в резонансном усилителе сигнала. Пример схемы такого усилителя в моделирующем пакете MicroCAP7 показан на рис. 5.16.

В состав усилителя входит импортный биполярный транзистор типа 2N5190 (можно использовать отечественный аналог) с цепями питания по постоянному току от источника постоянного напряжения 15В, параллельный колебательный контур и источник гармонического входного сигнала с частотой 159,15 кГц.( рад/с), совпадающей с резонансной частотой контура, и амплитудой 4 мВ.

На рис. 5.17 показаны временные диаграммы напряжений источника (верхняя кривая), выходного напряжения на коллекторе транзистора в узле 4 (нижняя кривая) и там же постоянное напряжение питания.

На рис. 5.18 представлены частотные характеристики резонансного усилителя (верхняя кривая – АЧХ, нижняя – ФЧХ). Коэффициент усиления равен примерно 3000 на частоте 151,6 кГц, что следует и из кривых на рис 5.17: амплитуда входного сигнала равна 3 мВ, а выходного 8,36 В (максимум АЧХ на рис. 5.18 несколько выше измеренного по временным диаграммам, так как она моделируется при весьма слабом сигнале).

Проведите моделирование рассмотренной цепи самостоятельно, изменяя ее параметры. Введите неполное включение транзистора к контуру, сравните результаты.

5.11. Задания для самостоятельного решения

Задание 5.1. Вычислите резонансное сопротивление параллельного колебательного контура при мГн, пФ, Ом.

Задание 5.2. Определите резонансную частоту контура

при кОм и С=1 нФ.

Задание 5.3. Найдите напряжение на емкости параллельного контура в цепи рис. 5.19 при мГн, пФ, Ом, В, кОм, рад/с. Расчет проведите в координатах обобщенной расстройки.

Задание 5.5. Получите выражение для АЧХ цепи, показанной на рис. 5.20. Постройте график АЧХ при мГн, пФ, Ом, кОм. Проведите расчет в координатах обобщенной расстройки и абсолютной частоты, сравните результаты.

Источник

Adblock
detector