Меню

Мощность двигателя от давления наддува



Автомобильный справочник

для настоящих любителей техники

Процессы наддува в двигателе

Процессы наддува в двигателе

С уществует два способа повышения мощности двигателя. Первый — повышение объема камеры сгорания. Но в условиях постоянно ужесточающийся экологических требований к двигателям внутреннего сгорания, этот метод в настоящее время практически не используется. Второй метод повышения мощности сводится к принудительному увеличению количества горючей смеси, то есть к наддуву. Поэтому сейчас, наддув является основным средством повышения мощности в современных автомобилях. Вот о том, какими бывают процессы наддува в двигателе, мы и поговорим в этой статье.

Процессы наддува

Мощность двигателя пропорциональна массовому расходу воздуха, который, в свою очередь, пропорционален плотности воздуха. Рабочий объем и частота вращения коленчатого вала двигателя могут быть увеличены за счет пред­варительного сжатия воздуха перед поступле­нием его в цилиндры двигателя, т.е. путем так называемого наддува. Коэффициент наддува соответствует увеличению плотности нагнетаемого воздуха по сравнению с атмосферным давлением (в двигателях без наддува воздух поступает под атмосферным давлением).

С точки зрения термодинамики наилучшие результаты могли бы быть получены в процессе изотермического сжатия, однако это технически недостижимо. На практике оптимальным процессом является адиабатиче­ское сжатие; при этом увеличение плотности воздуха сопровождается потерями.

Коэффициент наддува в бензиновых двигателях ограничивается возникновением детонации, а в дизельных двигателях — максимально допустимым пиковым давлением в цилиндре. Поэтому двигатели с наддувом обычно имеют более низкие степени сжатия, чем двигатели без наддува той же мощности.

Динамический наддув

На процессы газообмена оказывает влияние не только установка фаз газораспределения, но и геометрия впускных и выпускных каналов. Движение поршня на такте всасывания при открытии впускного клапана создает волну всасывания, которая отражается от открытого конца впускного трубопровода и возвращается к впускному клапану в виде волны давления. Эти волны давления могут быть использованы Для увеличения массового расхода воздуха на впуске. Кроме геометрии впускного трубопро­вода интенсивность этого эффекта наддува, основанного на газодинамике, также зависит от величины оборотов двигателя.

Инерционный наддув

Инерционный наддув

В системах инерционного наддува каждый цилиндр снабжен отдельным впускным каналом определенной длины, обычно соединяю­щимся с общей камерой. По этим впускным каналам волны давления могут распространяться независимо друг от друга (рис. «Принцип инерционного наддува» ). Длины отдельных впускных каналов адапти­рованы к установке фаз газораспределения таким образом, чтобы в желаемом диапазоне оборотов двигателя за счет волны давления, проходящей через открытый впускной клапан, достигалось увеличение массы заряда.

В то время как длина каналов должна быть адаптирована к диапазону оборотов двигателя, диаметры каналов должны быть согласованы с рабочим объемом цилиндра. В системе впуска, показанной на рисунке «Принцип изменения геометрии впускного трубопровода«, возможно переключение между двумя системами каналов различной длины. Переклю­чающий клапан или заслонка закрывается в нижнем диапазоне оборотов двигателя, и всасываемый воздух поступает в цилиндры через более длинные впускные трубопро­воды. При высоких оборотах переключаю­щий клапан открыт, и воздух поступает через короткий впускной трубопровод.

Прицип изменения геометрии впускного трубопровода

Наддув с использованием специально настроенных впускных каналов (резонансный наддув)

При определенных оборотах двигателя возникает резонанс колебаний газа во впускном трубопроводе, вызванных возвратно поступательным движением поршня, что создает дополнительный эффект наддува.

При таком варианте наддува короткие трубопроводы соединяют группы цилиндров двигателя с резонансными ресиверами с такими же интервалами, как промежутки между вспышками в цилиндрах (рис. «Принцип наддува с использованием специально настроенных впускных каналов» ).

Принцип наддува с использованием специально настроенных впускных каналов Повышение коэффициента наполнения цилиндра зарядом при помощи динамического наддува

Эти ресиверы сообщаются с атмосферой или общей камерой посредством специально отрегули­рованных трубок и резонаторов Гельмгольца. Длина и диаметр трубопроводов опреде­ляются диапазоном оборотов двигателя, в котором должен возникать эффект допол­нительного резонансного наддува (рис. «Повышение коэффициента наполнения цилиндра зарядом при помощи динамического наддува» ).

Впускные трубопроводы с изменяемой геометрией

Поскольку эффект динамического наддува зависит от режима работы (величины оборотов) двигателя, изменяемая геометрия впускного трубопровода позволяет получить практически идеальную кривую крутящего момента. Регулируемые системы могут быть реализованы посредством изменения длины впускных каналов за счет переключения между системами каналов различной длины или диаметра, попеременного перекрытия отдельных каналов в системах с несколькими наборами впускных каналов или пере­ключения между различными впускными объемами. Эти переключения могут осущест­вляться электрическими или электропневматическими клапанами или заслонками.

Механический наддув

В механических системах наддува привод нагнетателя осуществляется непосредственно от двигателя внутреннего сгорания (см. «Нагнетатели» ). При этом нагнетатель и двигатель внутреннего сгорания механически соединены друг с другом. Применяются механические объемные нагнетатели (компрессоры) различных конструкций (нагнетатели Roots, спиральные нагнетатели) и гидрокинетические компрессоры (например, радиальные компрессоры).

До настоящего времени коленчатый вал и вал нагнетателя соединяются с фиксиро­ванным передаточным отношением. Для привода нагнетателя могут использоваться механические или электромагнитные муфты. Давление наддува регулируется при помощи перепускного устройства с регулирующей заслонкой (регулятора давления наддува).

Преимущества механического наддува:

  • Нагнетатель установлен на холодной стороне двигателя;
  • Компоненты нагнетателя не оказывают влияния на работу системы выпуска отра­ботавших газов;
  • Нагнетатель мгновенно реагирует на изменение нагрузки.

Недостатки механического наддува:

  • Мощность, требуемая для привода нагнетателя, отбирается от полезной мощности двигателя, что вызывает повышение расхода топлива;
  • Приемлемый уровень шума может быть достигнут только посредством специальных мер;
  • Сравнительно большой объем и вес системы;
  • Нагнетатель должен быть установлен на уровне приводного ремня

Турбонаддув с использованием отработавших газов

В системах турбонаддува с использованием отработавших газов некоторая часть энергии отработавших газов преобразуется в механи­ческую энергию, необходимую для привода нагнетателя при помощи турбины (турбонаг­нетателя отработавших газов). Таким образом, этот процесс использует некоторую часть энтальпии, которая на безнаддувных двигателях остается неиспользованной. Однако эти си­стемы вызывают увеличение противодавле­ния отработавших газов. Для сжатия воздуха в таких системах используются исключительно гидрокинетические компрессоры.

Рис. «Сравнение кривых мощности и крутящего момента двигателей без наддува и с турбонаддувом»

Сравнение кривых мощности и крутящего момента двигателей без наддува и с турбонаддувом

Турбонагнетатели отработавших газов обычно применяются для создания высокого давления наддува даже при низких частотах вращения коленчатого вала двигателя. Другими словами, турбина турбонагнетателя рассчитана на среднюю частоту вращения. При этом следует учитывать, что при высоких частотах вращения давление наддува может возрастать до уров­ней, которые вызовут чрезмерные нагрузки на двигатель. Поэтому турбина снабжается пере­пускным клапаном, который при определенной частоте вращения начинает пропускать часть потока отработавших газов мимо турбины. При этом энергия этих отработавших газов остается неиспользованной. Значительно более удовлет­ворительные результаты (т.е. высокое давление наддува в нижнем диапазоне оборотов и в то же время возможность избежать перегрузки в верхнем диапазоне) могут быть получены при использовании турбонагнетателя с изменяемой геометрией турбины (VTG). В этих системах за счет изменения положения направляющих ло­паток осуществляется регулирование сечения потока и угла атаки рабочих лопаток (и, таким образом, давления отработавших газов, посту­пающих на турбину) (см. «Турбо­нагнетатели»).

Преимущества турбонаддува с использованием отработавших газов:

  • Значительное увеличение выходной мощ­ности на литр рабочего объема;
  • Значительное снижение расхода топлива по сравнению с двигателями без наддува равной мощности;
  • Снижение содержания токсичных продук­тов в отработавших газах;
  • Сравнительно небольшой занимаемый объем;
  • Может быть использован совместно с си­стемами рециркуляции отработавших га­зов низкого давления.

Недостатки турбонаддува с использованием отработавших газов:

  • Установка турбокомпрессора в тракте с «горячими» отработавшими газами требует применения термостойких материалов;
  • Повышенная тепловая инерция в системе выпуска отработавших газов;
  • Без принятия дополнительных мер сравни­тельно низкий пусковой крутящий момент в случае установки на двигателях с малым рабочим объемом.

Специальные виды турбонаддува

В электрифицированных системах турбонаддува используется дополнительный электродвигатель, приводящий во вращение турбонагнетатель при отсутствии потока отработавших газов. Преиму­щество такой системы заключается в обеспече­нии турбонаддува в переходных режимах работы двигателя и при низких частотах вращения. Эти системы пока что не нашли применения в серий­ном производстве автомобилей ввиду их большой сложности и высокой потребляемой электриче­ской мощности. Применение электрифицирован­ных систем турбонаддува позволит значительно уменьшить занимаемый системой объем.

Еще один специальный вид турбонаддува — системы турбонаддува с использованием энер­гии волн сжатия, которые пока что не нашли применения в серийном производстве. Принцип действия основан на отражении волн сжатия во вращающемся секционном роторе (см. «Нагне­татели и турбонагнетатели»). Основным преи­муществом является очень высокое быстродей­ствие, обеспечивающее быстрое нарастание крутящего момента в переходных режимах. Од­нако применение таких систем связано с высо­кими затратами, а необходимость в отдельном приводе создает проблему нахождения соответ­ствующего свободного пространства.

Читайте также:  Усилитель звука мощностью 200 вт

Диаграмма объемного расхода

Картина зависимости работы нагнетателя от характеристик двигателя наглядно иллюстри­руется диаграммой «давление-объемный расход» (рис. «Графики зависимости степени повышения давления в нагнетателе от объемного расхода для объемного нагнетателя с принудительным приводом и турбокомпрессора» ), на которой степень повы­шения давления в нагнетателе πс соотносится с объемным расходом V.

Особенно иллюстративны графики для недросселированных четырехтактных двига­телей (дизельных), поскольку они содержат наклонные прямые линии (характеристики массового расхода двигателей), которые отра­жают возрастание объемного расхода воздуха по мере того, как степень повышения давле­ния

р1 давление наружного воздуха

р2 — давление наддува; возрастает при постоянной частоте вращения двигателя.

Диаграмма демонстрирует степень повы­шения давления при постоянных частотах вращения нагнетателя для нагнетателя с принудительным приводом и турбоком­прессора.

Только механические нагнетатели, у кото­рых производительность пропорциональна их частоте вращения, пригодны для двига­телей автомобилей. Это нагнетатели с при­нудительным приводом конструкции Roots. Турбокомпрессоры с механическим приво­дом непригодны.

Система рециркуляции отработавших газов

Система рециркуляции отработавших газов (система EGR)

Система внешней рециркуляции отработавших газов (EGR) является эффективным средством снижения температуры в камере сгорания. Го­рячие отработавшие газы отводятся и охлажда­ются в охладителе системы EGR до температуры ниже 150 °С. Затем они смешиваются со све­жим воздухом и подаются в камеру сгорания. Уменьшение количества кислорода в свежей смеси и высокая теплоемкость рециркулирую­щих отработавших газов вследствие наличия в них составляющих Н2O и СO2 приводит к обра­зованию зоны горения, температура в которой, в зависимости от скорости рециркуляции от­работавших газов, снижена на несколько сотен градусов Цельсия. Благоприятными эффектами являются снижение содержания в выбросах ок­сидов азота NOх, а также снижение тепловых потерь и температуры компонентов цилиндра. Основной целью является снижение содержа­ния в отработавших газах токсичных продуктов.

Проблема, которую необходимо решить, заключается в транспортировке отработав­ших газов к стороне впуска свежего воздуха. Системы рециркуляции отработавших газов обычно применяются на двигателях с тур­бонаддувом. При этом имеют место два раз­личных подхода (рис. «Система рециркуляции отработавших газов (система EGR)» ). В случае системы рециркуляции отработавших газов низкого давления отработавшие газы отбираются по­сле прохождения через турбину, охлаждаются и снова подаются в воздушный компрессор. В случае системы рециркуляции отработавших газов высокого давления, которая, в частно­сти, предотвращает загрязнение компрессора и воздействие на него высоких тепловых на­грузок, рециркуляция отработавших газов осуществляется через сторону высокого дав­ления. При этом между сторонами впуска и выпуска должен поддерживаться надлежащий перепад давления, иначе возникает ухудшение условий протекания цикла заряда. Иногда ис­пользуются также флаттерные клапаны, т.е. клапаны, воспринимающие пульсации давления и открывающиеся только в случае превышения определенного порога давления на стороне выпуска отработавших газов.

Применение системы EGR

Системы EGR низкого давления уже нашли применение на легковых и коммерческих автомобилях и продолжают совершенство­ваться. Их привлекательными особенностями являются меньший неблагоприятный перепад давления (разность давлений на выходе из турбины и на входе воздушного компрессора). Однако, во избежание загрязнения компрессора такие системы требуют установки впускного фильтра твердых частиц. Следует также отметить более высокие тепловые нагрузки, которым подвергается компрессор.

Источник

Наддув двигателя (двс)

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси. Т.е., чем больше в цилиндрах сгорает топлива, тем более высокую мощность развивает силовой агрегат. Однако самое простое решение – повысить мощность двигателя путем увеличения его рабочего объема приводит к увеличению габаритов и массы конструкции.

Количество подаваемой рабочей смеси можно поднять за счет увеличения оборотов коленчатого вала (другими словами, реализовать в цилиндрах за единицу времени большее число рабочих циклов), но при этом возникнут серьезные проблемы, связанные с ростом сил инерции и резким увеличением механических нагрузок на детали силового агрегата, что приведет к снижению ресурса мотора. Наиболее действенным способом в этой ситуации является наддув.

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный – на пути воздуха находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах – еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном – тогда воздуха в цилиндре “поместится” больше. При наддуве улучшается наполнение цилиндров свежим зарядом, что позволяет сжигать в цилиндрах большее количество топлива и получать за счет этого более высокую агрегатную мощность двигателя.

В ДВС применяют три типа наддува:

  • резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен)
  • механический – в этом варианте компрессор приводится во вращение ремнем от двигателя
  • газотурбинный (или турбонаддув) – турбина приводится в движение потоком отработавших газов.

У каждого способа свои преимущества и недостатки, определяющие область применения.

Резонансный наддув

Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно – достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха. Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент.

Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах , при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха.

Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе. Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.

Механический наддув

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора.
Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.

Существует два вида механических нагнетателей: объемные и центробежные.

Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым.

Читайте также:  Как определить мощность трансформатора напряжения нами

Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors.

Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку.
Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам.
Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса.

Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува.

При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Газотурбинный наддув

Более широко на современных автомобильных двигателях применяются турбокомпрессоры. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от “турбо”. Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель сидит на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Частота вращения может превышать 200.000 об./мин. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов.

К достоинствам турбонаддува относят: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же использует энергию отработавших газов, следовательно, КПД увеличивает). Не следует путать удельную и общую экономичность мотора. Естественно, для работы двигателя, мощность которого возросла за счет применения турбонаддува, требуется больше топлива, чем для аналогичного безнаддувного мотора меньшей мощности. Ведь наполнение цилиндров воздухом улучшают, как мы помним, для того, чтобы сжечь в них большее количество топлива. Но массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного ТК, всегда ниже, чем у схожего по конструкции силового агрегата, лишенного наддува.

Турбонаддув дает возможность достичь заданных характеристик силового агрегата при меньших габаритах и массе, чем в случае применения “атмосферного” двигателя. Кроме того, у турбодвигателя лучше экологические показатели. Наддув камеры сгорания приводит к снижению температуры и, следовательно, уменьшению образования оксидов азота. В бензиновых двигателях наддувом добиваются более полного сгорания топлива, особенно на переходных режимах работы. В дизелях дополнительная подача воздуха позволяет отодвинуть границу возникновения дымности, т. е. бороться с выбросами частиц сажи.

Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо. Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами. В общем, как раз то, что нужно для применения турбокомпрессора. Турбокомпрессоры более просты в изготовлении, что окупает ряд присущих им недостатков.

При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» (по-английски “turbo-lag”) — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время «думает» и лишь потом подхватывает. Объяснение простое — требуется время, пока мотор наберет обороты, увеличится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя – и наконец, “пойдет” воздух. Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони.

Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Основная сложность при этом- высокая температура отработавших газов. Металлокерамический ротор турбины примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции. До последнего времени срок службы всего агрегата ограничивала долговечность подшипников. По сути, это были вкладыши, подобные вкладышам коленчатого вала, которые смазывались маслом под давлением. Износ таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли когда удалось разработать подшипники с керамическими шариками. Однако достойно удивления не применение керамики – подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя уже не нужен!

Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Полностью решить все проблемы можно использованием турбины с изменяемой геометрией (Variable Nozzle Turbine), например, с подвижными (поворотными) лопатками , параметры которой можно менять в широких пределах.

Читайте также:  Подбор мощности электродвигателя по крутящему моменту

Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува. При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув.

Комбинированные системы

Помимо одиночных систем наддува сейчас часто встречается и двухступенчатый наддув. Первая ступень — приводной компрессор — обеспечивает эффективный наддув на малых оборотах ДВС, а вторая — турбонагнетатель — утилизирует энергию выхлопных газов. После достижения силовым агрегатом достаточных для нормальной работы турбины оборотов, компрессор автоматически выключается, а при их падении вновь вступает в действие.

Ряд производителей устанавливают на свои моторы сразу два турбокомпрессора. Такие системы называют «битурбо» или «твинтурбо». Принципиальной разницы в них нет, за одним лишь исключением. «Битурбо» подразумевает использование разных по диаметру, а следовательно и производительности, турбин. Причем алгоритм их включения может быть как параллельным, так и последовательным (секвентальным). На низких оборотах быстро раскручивается и вступает в работу турбонаддув маленького диаметра, на средних к нему подключается «старший брат».

Таким образом, выравнивается разгонная характеристика автомобиля. Система дорогостоящая, поэтому ее можно встретить на престижных автомобилях, например Maserati или Aston Martin. Основная задача «твинтурбо» заключается не в сглаживании «турбоямы», а в достижении максимальной производительности. При этом используются две одинаковые турбины. Устанавливаются «твин-» и «битурбо» как на V-образные блоки, так и на рядные моторы. Варианты подключения турбин также идентичны системе «битурбо». В чем же смысл? Дело в том, что производительность турбины напрямую зависит от двух ее параметров: диаметра и скорости вращения. Оба показателя весьма капризны. Увеличение диаметра приводит к повышению инерционности и, как следствие, к пресловутой «турбояме». Скорость же турбины ограничивается допустимыми нагрузками на материалы. Поэтому две скромные и менее инерционные турбины могут оказаться эффективнее одной большой.

Рекомендации

Во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое изначально рассчитано на более высокие температуры, чем обычное. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку. Двигатель это масло переживет, а вот турбонаддув — не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.

И, наконец, третье, самое главное условие нормальной работы турбонаддува. В жизни турбины есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей компрессора, а следовательно, и тепловое расширение, идут с разной скоростью. Поэтому не спешите, дайте двигателю прогреться.

Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше). За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут. В этой ситуации значительно облегчает жизнь турбо-таймер. Он проследит за тем, чтобы разгоряченный двигатель автомобиля поработал несколько минут на холостом ходу, остужая элементы турбонаддува, даже если владелец уже покинул и закрыл своё авто. Впрочем, подобную функцию имеют и многие охранные сигнализации.

Источник

Может ли турбонаддув увеличить мощность двигателя?

Мощность, которую может развить двигатель внутреннего сгорания, зависит от количества цилиндров их объема, характеристик топлива, а также от степени наполнения этого объёма окислителем — воздухом. И если с количеством и размер поршней все понятно, то со степень наполнения цилиндров воздухом ситуация чуть сложнее.

Обычно воздух поступает в камеру сгорания, под действием давления атмосферы, поршень движется вниз, увеличивает объем рабочей камеры. Из-за увеличения объема давление падает ниже атмосферного, под действием давления атмосферы поступает в двигатель. Такие двигатели называют атмосферными.

Но воздух можно наддувать (нагнетать) в двигатель принудительно, причем если мы этот воздух сожмем компрессором , то в тот же самый объем двигателя вместится гораздо больше газа. В полости цилиндра будет находится больше окислителя — кислорода, что позволит сжечь больше топлива и развить большую мощность.

Итак, для наддува нужен компрессор устройство, которое будет сжимать воздух, чаще всего для этого используют центробежные компрессоры, но можно применить и роторный.

Работа наддува с центробежным нагнетателем

Воздух в таком компрессоре будет сжиматься и подаваться в рабочую камеру при вращении колеса, на котором расположены лопатки. Они передают частицам воздуха энергию и разгоняют их, под действием центробежной силы частицы движутся к периферии колеса и попадают в спиральный отвод, и через выходной патрубок компрессора поступают к двигателю.

Для работы компрессора необходимо вращать вал, на котором установлено рабочее колесо. Это можно сделать механически, с помощью ременной передачи, один шкив нужно прикрепить к коленчатому валу двигателя, другой на валу компрессора.

Наддув компрессором с приводным нагнетателем

Этот вал должен вращаться с очень большой скоростью, только тогда колесо будет сжимать воздух. Поэтому передачу нужно подбирать таким образом, чтобы частота вращения увеличилась, а при необходимости можно установить мультипликатор.

Получается, что с одной стороны мы часть мощности от двигателя забираем, с другой стороны — получаем ее прирост, за счет более эффективной реакции сгорания.

Эта схема называется наддувом с приводным нагнетателем . Часть мощности двигателя забирается и используется для вращения вала компрессора. Но есть и другая, более интересная и экономичная схема — турбонаддув.

Турбонаддув двигателей внутреннего сгорания

В турбонаддуве для вращения вала компрессора используется турбина, которая приводится во вращения выхлопными газами от двигателя. Турбина — машина обратная компрессору, у компрессора вращают вал, чтобы он перемещал газ, у турбины наоборот — движущийся газ, заставляет вращаться колесо с лопатками, установленное на валу, то есть на выходе турбины мы получаем вращение вала.

Установка турбонаддува. Компрессорное и турбинное колеса установлены на одном валу

Установим компрессорное и турбинное рабочие колеса на одном валу — получим систему турбонаддува.

Выхлопные газы будут вращать турбину , которая заставит вращаться вал, а вместе с ним и компрессорное колесо, которое будет сжимать и подавать воздух в ДВС. Разумеется, к этой системе придется добавить еще и механизм управления. Количества выхлопных газов, с одной стороны должно быть не слишком мало, в этом случае мы не получим нужно частоты вращения, и не слишком много, мы же не хотим чтобы наш двигатель «лопнул» от воздуха. Поэтому в систему наддува могут устанавливаться перепсукные, предохранительные клапаны и даже программируемая система управления.

Турбина установки наддува

Не стоит считать, что турбонаддув дает «бесплатный» прирост энергии, установленная турбина повышает сопротивление в выхлопной линии, это значит, что двигателю это сопротивление придется преодолеть. Однако прирост мощности от более эффективного процесса сгорания может быть гораздо выше затрат, что позволяет турбонаддувву увеличить мощность ДВС.

Система турбонаддува разогревается до очень высоких температур, этому способствует и температура выхлопных газов, и сам процесс сжатия воздуха. А при повышении температуры его плотность уменьшается, а объем увеличивается. Для повышения эффективности работы двигателя, в этом случае, нужно охладить воздух, это делается с помощью интрекуллера, который по сути является теплообменником. Он может быть воздушным и даже водяным, но это уже другая история, если вы хотите подробнее узнать о работе интеркуллера или других элементов наддува — напишите об этом в комментариях.

Источник