Mosfet транзисторы принцип работы
Что такое МОП-транзистор, принцип работы, типы, на схеме, преимущества недостатки
МОП-транзистор (полевой транзистор на основе оксидов металлов и полупроводников) является наиболее широко используемым типом полевых транзисторов с изолированным затвором. Они используются в различных приложениях благодаря простым рабочим явлениям и преимуществам по сравнению с другими полевыми транзисторами.
Что такое МОП-транзистор
Metal Oxide Silicon Field Effect Transistor (Металлооксидные полевые транзисторы) сокращается как МОП-транзистор. Это униполярный транзистор, используемый в качестве электронного переключателя и для усиления электронных сигналов. Устройство имеет три терминала, состоящих из истока, затвора и стока. Помимо этих клемм имеется подложка, обычно называемая корпусом, которая всегда подключается к клемме источника для практических применений.
В последние годы его открытие привело к доминирующему использованию этих устройств в цифровых интегральных схемах из-за его структуры. Слой диоксида кремния (SiO2) действует как изолятор и обеспечивает электрическую изоляцию между затвором и активным каналом между истоком и стоком, что обеспечивает высокий входной импеданс, который почти бесконечен, таким образом захватывая весь входной сигнал.
Принцип работы МОП-транзистора (MOSFET)
Он изготовлен путем окисления кремниевых подложек. Он работает путем изменения ширины канала, через который происходит движение носителей заряда (электронов для N-канала и дырок для P-канала) от источника к стоку. Терминал затвора изолирован, напряжение которого регулирует проводимость устройства.
Типы МОП-транзистора (MOSFET)
На основе режима эксплуатации МОП-транзисторы можно разделить на два типа.
- Режим насыщения
- Режим истощения
Режим насыщения
В этом режиме отсутствует проводимость при нулевом напряжении, что означает, что оно по умолчанию закрыто или «ВЫКЛ», так как канал отсутствует. Когда напряжение затвора увеличивается больше, чем напряжение источника, носители заряда (дырки) смещаются, оставляя позади электроны, и, таким образом, устанавливается более широкий канал.
Напряжение на затворе прямо пропорционально току, то есть с увеличением напряжения на затворе ток увеличивается и наоборот.
Классификация режима насыщения МОП- транзисторов
Усовершенствованные МОП-транзисторы можно классифицировать на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- N-канальный тип насыщения MOSFET
- P-канальный тип насыщения MOSFET
N-канальный тип насыщения MOSFET
- Слегка легированная субстрат P-типа образует корпус устройства, а исток и сток сильно легированы примесями N-типа.
- N-канал имеет электроны в качестве основных носителей.
- Подаваемое напряжение затвора положительно для включения устройства.
- Он имеет более низкую собственную емкость и меньшую площадь соединения из-за высокой подвижности электронов, что позволяет ему работать на высоких скоростях переключения.
- Он содержит положительно заряженные примеси, что делает преждевременным включение полевых МОП-транзисторов с N-каналом.
- Сопротивление дренажу низкое по сравнению с P-типом.
P-канальный тип насыщения MOSFET
- Слегка легированная подложка N-типа образует корпус устройства, а исток и сток сильно легированы примесями P-типа.
- P-канал имеет отверстия в качестве основных носителей.
- Он имеет более высокую внутреннюю емкость и малую подвижность отверстий, что делает его работающим при низкой скорости переключения по сравнению с N-типом.
- Подаваемое напряжение затвора является отрицательным для включения устройства.
- Водостойкость выше по сравнению с N-типом.
Режим истощения
В этом типе канал уже установлен, и очевидно, что проводимость происходит даже при нулевом напряжении, и он открыт или включен по умолчанию. В отличие от типа насыщения, здесь канал лишен носителей заряда, чтобы уменьшить ширину канала.
Напряжение на затворе обратно пропорционально току, т. Е. С увеличением напряжения на затворе ток уменьшается.
Классификация режима истощения МОП-транзисторов
Истощающие МОП-транзисторы могут быть классифицированы на два типа в зависимости от типа используемого легированного субстрата (n-типа или p-типа).
- Тип истощения канала N МОП-транзистор
- Тип истощения канала P МОП-транзистор
Тип истощения канала N МОП-транзистор
- Полупроводник P-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Применяемое напряжение на затворе отрицательное.
- Канал обеднен свободными электронами.
Тип канала истощения канала MOSFET
- Полупроводник N-типа образует подложку, а исток и сток сильно легированы примесями N-типа.
- Поданное напряжение затвора положительное.
- Канал обеднен свободными отверстиями.
Символ на схеме разных типов МОП-транзистора (MOSFET)
Символы различных типов МОП-транзисторов изображены ниже.
Применение МОП-транзистора
- Усилители MOSFET широко используются в радиочастотных приложениях.
- Он действует как пассивный элемент, такой как резистор, конденсатор и индуктор.
- Двигатели постоянного тока могут регулироваться силовыми полевыми МОП-транзисторами.
- Высокая скорость переключения MOSFET делает его идеальным выбором при проектировании цепей прерывателей.
Преимущества МОП-транзистора
- МОП-транзисторы обеспечивают большую эффективность при работе при более низких напряжениях.
- Отсутствие тока затвора приводит к высокому входному импедансу и высокой скорости переключения.
- Они работают при меньшей мощности и не потребляют ток.
Базовая структура MOSFET транзистора
Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.
При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.
Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.
Режим истощения МОП-транзистора
Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.
Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.
Другими словами, для режима истощения п-канального МОП-транзистора:
- Положительное напряжение на стоке означает большее количество электронов и тока.
- Отрицательное напряжение означает меньше электронов и ток.
Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.
N-канальный МОП-транзистор в режиме истощения
Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.
Режим усиления МОП-транзистора
Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.
Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.
Особенности режима усиления
Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:
- Положительный сигнал транзистор переводит в проводящий режим.
- Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.
Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:
- Положительный сигнал переводит транзистор «Выкл».
- Отрицательный включает транзистор в режим «Вкл».
Режим усиления N-канального МОП-транзистора
В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.
Транзистор полевой
В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.
исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.
сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.
затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.
Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.
Рис.1. Типы полевых транзисторов и их схематическое обозначение.
«Полевик» с изолированным затвором и индуцированным каналом
Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».
Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.
Обратный диод
Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.
Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.
В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.
Рис.2. Паразитные элементы в составе полевого транзистора.
Основные преимущества MOSFET
- меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
- простая схема управления. Схемы управления напряжением более просты, чем схемы управления током.
- высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
- повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.
Основные характеристики MOSFET
- Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
- Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
- Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
- Ids – максимальный постоянный ток через транзистор.
- Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
- Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
- Qg – заряд который необходимо передать затвору для переключения.
- Vgs(max) – максимальное допустимое напряжение затвор-исток.
- t(on), t(of) – время переключения транзистора.
- характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)
Что еще нужно знать про полевой транзистор?
P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.
МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.
МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.
Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs Понравилась статья? Расскажите друзьям:
Источник
Подключение мощных Мосфетов к микроконтроллеру
В этой статье мы рассмотрим возможность подключения мощных Mosfet транзисторов для коммутации нагрузки с большим током сигналом с микроконтроллера. Это позволит подключать к микроконтроллеру цепи управления двигателями, светодиодами или любым устройством питания, которое работает с низким постоянным напряжением (DC).
Силовые мосфеты — это электронные компоненты, которые позволяют нам контролировать очень высокие токи. Как и в случае с обычными МОП-транзисторами, у них есть три вывода, которые называются: Сток (D), Исток (S) и Затвор (G). Основной ток проходит между истоком и стоком (I SD), в то время как управление этим током достигается путем подачи напряжения на клемму затвора (относительно клеммы источника), известной как V GS.
Принцип работы Мосфетов
В исходном состоянии ток затвора практически равен нулю, поскольку внутри компонента клемма затвора подключена к своего рода конденсатору. Поэтому ток затвора протекает только в тот момент, когда мы меняем уровень входного напряжения (изменение логического состояния), и это является причиной, почему потребление Mosfet (как в случае всех логических схем MOS) увеличивается пропорционально частоте переключения.
Существуют «силовые мостики» двух типов: те, что в канале N, и в канале P. Разница между ними заключается в полярности соединения исток-сток и в том, что напряжение затвора P-канала отрицательное (те же различия, которые существуют между NPN и PNP транзисторами).
Мощный мосфет может работать в «линейном режиме» или в «насыщенности». В аналоговых системах, например на выходных каскадах усилителей звука, мосфеты работают в линейном режиме, тогда как в цифровых системах, в которых они используются в качестве цифровых выключателей питания, они работают в режиме отключения (ВЫКЛ) или насыщения (НА).
В этой статье мы проанализируем только тот мосфет, который используется в качестве цифровых коммутаторов. Когда mosfet находится в состоянии насыщения, значение внутреннего сопротивления между истоком и стоком (Rsd) очень низкое, следовательно рассеиваемая мощность в нем будет незначительной, однако ток через него может проходить очень высокий.
Чтобы довести Mosfet до насыщения, необходимо, чтобы управляющее напряжение на клемме затвора было достаточно высоким, и это может быть проблемой, если мы напрямую используем низкое выходное напряжение микроконтроллера.
Я лучше объясню на примере
Для насыщения биполярного транзистора (типа BC548) необходимо превысить пороговое напряжение базы, которое составляет всего 0,6 В. Управляющее напряжение 0,6 В может быть получено с любой цифровой схемы, работающей от 5 В, 3,3 В и до 1,8 В.
И наоборот, напряжение, необходимое для приведения в действие Mosfet (называемое «пороговым напряжением» или V th), намного выше (несколько вольт) и зависит от модели Mosfet.
Более того, даже если бы мы достигли этого значения, этого было бы недостаточно, потому что мы должны превысить значение линейной области работы, чтобы привести ее к насыщению. Если нет, проводимость не будет полной, и, следовательно, часть мощности будет рассеиваться в mosfet в виде тепла, потому что мощность, рассеиваемая mosfet, является результатом умножения между падением напряжения и током, проходящим по нему (Pmosfet = Vsd * Isd).
На графике мы видим кривые движения типичного N-канального мосфета с разными напряжениями на затворе в двух рабочих областях (линейная область слева от графика и насыщенность справа).
Как мы видим, если мы хотим получить максимальный выходной ток, напряжение на затворе (VGS) должно быть 7,5 В. Это значение варьируется в зависимости от используемой модели mosfet.
Для решения этой проблемы есть две возможности: использовать адаптер, который увеличивает выходные уровни микроконтроллера, или использовать mosfet, который работает с более низкими напряжениями на затворе. МОП-транзисторы с низким уровнем управления затвором известны как «силовые МОП-транзисторы логического уровня».
На графике мы видим кривую движения мосфета «логический уровень» IRL530 (зеленого цвета) по сравнению с классическим мосфетом IRF530 (синим цветом).
Вертикальная полосатая линия указывает на логический уровень 4,75 В (типичный выходной уровень микроконтроллера, питаемого от 5 В). Как мы видим, максимальный выходной ток IRF530 не превышает 2,6 А, хотя эта модель способна выдавать гораздо больший ток, в то время как IRL530 превышает 20 А (полная проводимость).
Если бы наш микроконтроллер работал с напряжением 3,3 В, IRF530 даже не начал бы запускаться.
Поэтому выбор типа «логический уровень» Mosfet является лучшим выбором при работе с цифровыми цепями.
На рисунке мы видим соединение «логического уровня» mosfet с микроконтроллером для включения светодиодной ленты. Как объяснялось в начале этой статьи, когда логический уровень управления изменяется, на мгновение mosfet поглощает определенный ток, который заряжает внутренний конденсатор терминала Gate.
Импульсное регулирование мощности (ШИМ) с применением мосфетов
Резистор 4,7К служит для ограничения этого начального тока. Мы могли бы использовать любое значение сопротивления, но низкое значение позволяет получить быструю зарядку этого конденсатора и, следовательно, более быстрое переключение mosfet. Быстрая коммутация мосфета полезна если мы хотим использовать импульсное регулирование мощности (ШИМ).
В этом типе регулирования, если бы переключение mosfet было «медленным», оно было бы длиннее в линейной зоне и, следовательно, увеличивало бы рассеивание мощности в нем, особенно если мы работаем с высокими частотами. Как только Мосфет переключился, затвор больше не поглощает ток. Поэтому, если мы планируем использовать наш mosfet для простого включения и выключения, значение этого R может быть и 10K.
Напротив, если мы хотим модулировать выходную мощность с помощью ШИМ-модуляции, для нас удобно использовать значение сопротивления 4,7 К, 3,3 К или 1,2 К включительно. Лучший выбор зависит в основном от частоты ШИМ.
Сопротивление 100 К замкнутое на землю, служит для определения точного логического состояния в том случае, если микроконтроллер не сделал этого, как например в фазе инициализации того же самого.
Если у нас возникла необходимость подключить Mosfet без «логического уровня» к цифровой цепи, мы можем добавить транзистор, который позволит нам увеличить управляющее напряжение, как мы видим на следующем рисунке.
Принцип работы очень прост. Когда выход микроконтроллера имеет низкий логический уровень (0 вольт), транзистор не работает, и, следовательно, его коллектор, который подключен к затвору mosfet, будет иметь положительный потенциал 12 В через положительное сопротивление.
Когда выходной сигнал микроконтроллера становится высоким (1,8 В, 3,3 В или 5 В), транзистор приводит в действие и доводит затвор мосфета до 0 В, поэтому он прекращает движение. Как видите, эта схема имеет дефект, который работает наоборот, то есть активируется, когда уровень выходного сигнала микрофона низкий.
Несмотря на это, преимущество в том, что напряжение затвора достигает максимального напряжения питания, что гарантирует полное насыщение любого типа мосфета, который мы подключаем. Значение сопротивления затвора, связанного с положительным, изменяет скорость переключения полевого двигателя, как объяснено в предыдущем случае. (высокие значения для медленного переключения и низкие значения для быстрого переключения (ШИМ-модуляция).
Если мы хотим использовать общий mosfet (не «логический уровень») с неинвертированной логикой управления, мы можем изменить его на P-канал, как показано на рисунке. Обратите внимание, что выходная мощность (в примере, светодиодная лента) подключена к земле (отрицательной) вместо положительной.
Единственная проблема, представленная этим последним решением, состоит в том, что его нельзя использовать, если мы хотим управлять светодиодной полосой RGB с 3 каналами, потому что эти полосы обычно имеют общий анод (уникальный положительный), в то время как мы использовали бы полосу RGB с общим катодом (общий негатив). В любом случае, это решение очень полезно во многих случаях и сможет пригодлится в ваших проектах.
Источник
PicHobby.lg.ua
Полезные изобретения на микроконтроллерах
Стабилизатор тока на полевом транзисторе
В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.
Описание задумки.
Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.
Немного теории.
Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.
Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.
Ось У – ток через светодиод.
Ось Х – падение напряжения на светодиоде.
Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!
Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!
Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.
Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.
При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.
О схеме.
Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.
Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.
Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.
Настройка.
Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.
В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.
Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.
Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.
В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.
О печатной плате.
Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.
О деталях.
Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.
Источник
Применение MOSFET в современных силовых импульсных устройствах
Texas Instruments UCC27201A
Несмотря на то, что нитрид-галлиевые транзисторы становятся все более популярным решением для силовых ключей, заслуженные MOSFET до сих пор можно эффективно использовать в современных приложениях.
С созданием нитрид-галлиевых (GaN) транзисторов многие производители полупроводников начали переоценивать роль обычных MOSFET. Из факта появлением GaN устройств автоматически не следует, что обычные MOSFET устарели, однако перспектива повышения эффективности источников питания и уменьшения их размеров подогревает воображение разработчиков аналоговых устройств. В преддверии так называемой «нитрид-галлиевой революции» полезно разобраться, какие типы устройств имеются на сегодняшний день, и что вы можете с ними сделать.
До недавнего времени мир мощных транзисторов был грубо разделен на два типа: MOSFET и биполярные транзисторы. MOSFET остаются доминирующим типом транзисторов в силовых коммутационных схемах благодаря высокой скорости переключения и малому сопротивлению сток-исток. Ежегодно продается порядка 40 млрд. MOSFET.
MOSFET проводят электрический ток в одном направлении (вернее, наиболее эффективно проводят его в одном направлении), а их способность быстро включаться и выключаться при изменении входного напряжения (напряжения на затворе) делает их полезными для формирования импульсов. Наиболее известные из мощных переключательных схем – это импульсные источники питания, однако MOSFET также широко используются в импульсных электроприводах двигателей постоянного тока и звуковых усилителях класса D.
Биполярные транзисторы и IGBT
В отличие от мощных MOSFET, которые включаются и выключаются исключительно быстро и, в идеале, линейны, биполярные транзисторы порождают «мягкие фронты», больше напоминающие синусоидальные сигналы, чем импульсы. Они реагируют на изменения тока на своих входах, и могут использоваться для относительно медленных индуктивных нагрузок: электродвигателей, источников питания потребительских устройств и звуковых динамиков. Ежегодно используется от 7 до 8 млрд. мощных биполярных транзисторов.
Для того чтобы биполярные транзисторы вели себя подобно усилителям, необходимо дополнительно смягчать их переключательные свойства. Надо организовать им входное смещение таким образом, чтобы они всегда находились в линейной области и никогда не были полностью открыты или закрыты. Биполярные транзисторы вполне подходят для управления индуктивными нагрузками, однако, не имея такого низкого сопротивления, как MOSFET, они могут очень сильно нагреваться.
Третий тип, биполярный транзистор с изолированным затвором (insulated-gate bipolar transistor, IGBT), фактически представляет собой биполярный транзистор с встроенным драйвером затвора. Он переключается несколько быстрее, чем биполярные устройства, но не так быстро, как MOSFET. Особое преимущество IGBT – это их способность выдерживать большие напряжения (свыше 600 В) и токи, что делает их фаворитами для управления промышленными электроприводами в системах автоматизации производства (где они управляют конвейерными лентами и манипуляторами роботов), а также в автомобилях (для управления электроприводами люков и зеркал бокового обзора). Ежегодно продается от 1.5 до 2.5 млрд. IGBT.
Поведение транзисторов
Несмотря на доступность широчайшего выбора диапазонов рабочих напряжений и токов мощных транзисторов, выпускаемых в разнообразных корпусах и обеспеченных технической поддержкой производителей, каждому из трех видов транзисторов – биполярным, MOSFET и IGBT – присуще свое поведение, определяющее области их применения. Благодаря дешевизне в больших партиях (например, стоят от 12 до 15 центов за штуку), 100-вольтовые биполярные транзисторы широко используются для получения напряжений ±40 В в усилителях мощности звукового диапазона. (В биполярные транзисторы для аудиоприложений некоторые производители встраивают цепи автоматического смещения).
Между тем, 600-вольтовые IGBT можно найти дома в электроприводах бытовой техники, подключенной к сети переменного тока 220 В, например, в стиральных машинах или сушилках. Основная область применения мощных MOSFET – безусловно, импульсные источники питания. В них транзисторы на напряжения 25, 30 или 40 В, называемые «низковольтные MOSFET», используются для получения питающих напряжений 5 или 12 В, необходимых компьютерам и телекоммуникационной аппаратуре.
Хотя и не всегда, инженеры склонны выбирать транзисторы с запасом по току и напряжению. Вы можете заметить, что в стиральной машине, которая подключается к сети 220 В, используются IGBT, рассчитанные на 600 или 650 В, а в силовых цепях плат серверных модулей, питающиеся от 5.0 В или 3.3 В, установлены MOSFET, допустимые напряжения которых начинаются с 30 В. И, наконец, на стереодинамики работают 100- и 200-вольтовые биполярные транзисторы.
Такой запас позволяет быть уверенным, что наши системы не останутся без источников питания. Кроме того, он защищает от резких выбросов напряжения и скачков тока. (Автомобильное оборудование особенно подвержено выбросам, и для того, чтобы справиться с бросками в 150 В, выбираются компоненты, рассчитанные на 400 В).
Убедить инженеров отказаться от чрезмерного запаса по предельным параметрам, в конечном счете, могут постоянное сглаживание, фильтрация и стабилизация на протяжении всей цепи прохождения питания. Такой подход затронул бы архитектуру вычислительных серверов, где такие производители, как, например, IBM и NTT DOCOMO выступают за распределительные сети 385 В постоянного тока для мегаваттных дата-центров и 48 В как промежуточное напряжение для стоек и шкафов. Это позволило бы разработчикам сузить границы предельных параметров мощных компонентов и, например, использовать меньшие по размерам и более дешевые 60-вольтовые компоненты в тех слотах, где раньше служили компоненты с допустимым напряжением 100 В. При этом инженеры должны обращать внимание на области безопасной работы (safe operating areas – SOA) тех транзисторов, которые они надеются использовать.
Области безопасной работы
Область безопасной работы определяется как множество значений тока и напряжения, в пределах которых можно ожидать, что устройство будет работать без повреждений.
Как правило, область безопасной работы представляется в виде графика в спецификации производителя. Ток в амперах отображается по оси Y. Максимальное напряжение сток-исток для MOSFET (или напряжение коллектор-эмиттер для биполярного транзистора) откладывается по оси X. Кривая обычно напоминает горнолыжный склон, где допустимый ток резко падает с увеличением напряжения.
Поскольку обычно MOSFET используются в импульсных схемах, некоторые производители транзисторов определяют область безопасной работы в зависимости от длительности импульсов (в миллисекундах). Если транзистор постоянно включен (проводит постоянный ток), то максимальный допустимый ток спадает быстрее, чем если ток пульсирует с интервалом 1 мс или 10 мс. Как видно из Рисунка 1, область безопасной работы будет наибольшей, когда транзистор переключается с периодом 100 мкс (что эквивалентно частоте 10 кГц). Таким образом, область безопасной работы любого транзистора зависит от коэффициента заполнения импульсов, то есть, от соотношения между временами включения и выключения.
Рисунок 1. | Область безопасной работы для напряжения и тока зависит от коэффициента заполнения управляющих импульсов. |
Драйверы верхнего и нижнего плеча
При выборе транзисторов может оказаться желательным обратить внимание на способ включения MOSFET в схеме источнике питания. В частности, определить, подключена ли индуктивная или резистивная нагрузка между стоком MOSFET и положительной шиной питания (конфигурация, называемая «ключ нижнего плеча»), или же нагрузка подключена между истоком и землей («ключ верхнего плеча»).
Режимы работы транзисторов в верхнем и нижнем плече не всегда одинаковы. Когда драйвер верхнего плеча нагружен больше, чем драйвер нижнего плеча, вы озабочены тем, чтобы он не замкнулся на положительный источник питания. Аналогично, вы не захотите, чтобы драйвер нижнего плеча был закорочен на землю. Таким образом, требования, предъявляемые к драйверам верхнего и нижнего плеча, различны.
В драйвере нижнего плеча вывод истока n-канального транзистора соединен с землей, а сток соединен с индуктивной нагрузкой, другой вывод которой подключен к положительному источнику питания. Любой положительный заряд затвора включает транзистор, открывая путь протекания тока через нагрузку. В схеме нижнего плеча пороговое напряжение на затворе равно уровню логической единицы для управляющей ключом 3-вольтовой КМОП или 5-вольтовой логики.
В конфигурации верхнего плеча сток MOSFET подключается к положительной шине питания, а исток подключается к нагрузке, противоположный вывод которой соединен с землей. При этом только для того, чтобы просто включить n-канальный транзистор, на его затворе должно быть напряжение, равное напряжению на нагрузке (почти равное напряжению питания), плюс пороговое напряжение затвора (3 В).
Каналы p- и n-типа
Простой ключ верхнего плеча можно сделать на p-канальных MOSFET. Использование отрицательного напряжения для открывания p -канального MOSFET меняет схему управления. А именно, чтобы дать транзистору «проводить ток», надо опустить управляющее напряжение ниже порога, а чтобы его выключить, надо подать на затвор напряжение шины питания.
Но p-канальные транзисторы сложны в изготовлении, и, соответственно, дороже обычных n-канальных приборов, а для их открывания может потребоваться отрицательное напряжение на затворе (или, по крайней мере, подключение затвора к земле). Это подходит для батарейного питания переносной аппаратуры, но неудобно для импульсных источников питания.
Одним из решений из решений может быть объединение n- и p-канального транзисторов в двухтактной конфигурации, где они проводят ток поочередно. Здесь стоки p-канального MOSFET верхнего плеча и n-канального MOSFET нижнего плеча соединены вместе, а их затворы управляются синхронно, в результате чего получается один сильноточный ключ. Разработчик должен контролировать процесс переключения, не допуская сквозных токов, которые могут возникать, если оба MOSFET включаются одновременно.
В качестве альтернативы не полностью согласованным p- и n-канальным MOSFET можно использовать микросхему драйвера затворов, которая управляет MOSFET верхнего и нижнего плеча в двухтактной схеме. (Оба устройства n-канальные). Оба транзистора могут включаться и выключаться одной микросхемой (Рисунок 2).
Рисунок 2. | Разработчики могут выбрать микросхему драйвера затворов, управляющую MOSFET верхнего и нижнего плеча в двухтактной схеме. (Оба устройства n-канальные). |
И последнее замечание. Низкое сопротивление сток-исток открытого транзистора (RDS(on)) под нагрузкой не говорит о хороших переключательных характеристиках MOSFET, хотя обычно производители на первом месте указывают в спецификации именно низкое значение RDS(on). От величины сопротивления RDS(on) зависит эффективность полевого транзистора – чем оно меньше, тем меньше выделяется тепла. Однако при снижении сопротивления транзистора падает скорость его переключения. Это связано с тем, что для снижения RDS(on) приходится увеличивать размеры затвора, что увеличивает его емкость и затрудняет управление транзистором.
Материалы по теме
Перевод: Дмитрий Иоффе по заказу РадиоЛоцман
Источник