Меню

Компенсацию реактивной мощности рекомендуется производить до значения коэффициента мощности



Компенсация реактивной мощности

Светильники включаются при помощи клавишного выключателя для скрытой установки. У каждого ряда светильника свой выключатель, свой автомат, установленный в щитке освещения ЩО, а в РП 1 имеется общий автомат для всей осветительной установки.

Питание от трансформатора подается на распределительный щит подстанции, затем на силовой распределительный пункт РП, далее от распределительного пункта питаются групповые щиты освещения ЩО, а от них через клавишные выключатели питаются светильники ШЛП с лампами накаливания ЛН

Выполнение этих требований в известной мере зависит от принятой схемы питания освещения.

Осветительная установка представляет собой сложный комплекс, состоящий из распределительных устройств, магистральных и групповых электрических сетей, различных электроустановочных приборов, осветительной арматуры и источников света, а также поддерживающих конструкций и крепежных деталей.

Осветительной электроустановкой называется специальное электрическое устройство, предназначенное для освещения территорий, помещений, зданий и сооружений.

Расчет осветительных нагрузок

К осветительным электроустановкам предъявляется следующие основные требования: надежность и бесперебойная работа всех элементов; обеспечения требуемого уровня освещенности помещений и рабочих мест; удобство и безопасность обслуживания и ремонта приборов, светильников и аппаратов.

Питание осветительных электроустановок осуществляется по схеме блока « Трансформатор – магистраль».

Провода прокладываются открыто, непосредственно по поверхностям строительных конструкций параллельно и перпендикулярно строительным и архитектурным линиям помещения; крепятся через каждые 200 мм стальными скобами.

При определении расчетной нагрузки питающей сети вводится коэффициент спроса, равный отношению расчетной нагрузки к установленной мощности, т.е. пропорциональный числу одновременно включенных ламп.

При определении осветительной электроустановки пользуемся методом коэффициента использования светового потока. Этот метод применяется при расчете общего равномерного освещения горизонтальных плоскостей закрытых помещении с симметрично расположенными светильниками. Пи этом методе определяется освещенность поверхности с учетом как светового потока подающего от светильников, так и отраженного от стен, потолков и самой освещаемой поверхности. Также для расчетов освещения помещений со светлыми стенами и потолками при светильниках рассеянного и отраженного света.

Определяем тип светильника:

Определяем коэффициенты отражения:

Pп = 70%; Pс = 50%; Pл = 10%

Определяем индекс помещения:

l = = = 2,2 (11)

Определяем коэффициент использования светового потока:

u = 0,61 [5, стр. 126, табл. 5-12]

Определяем общий световой поток:

Fn = = = 194117,6 Лм (12)

Emin – минимальная освещенность, Лк

S – площадь помещения, м²

Kзап – коэффициент запаса [5, стр. 124, табл. 5-10]

z – поправочный коэффициент [5, стр. 111]

n – колличество ламп в светильнике [5, стр. 117]

u – коэффициент использования светового потока [5, стр. 126, табл. 5-12]

nсв = = = 30 св (13)

Определяем общую осветительную мощность осветительной установки:

Росв = nсв*Рсв = 30*3*40 = 3600 Вт = 3,6 кВт (14)

Реактивная мощность потребляется как электроприёмннками, так и элементами сети. Потребление реактивной мощности, по существу, связано с потреблением активной мощности и обусловлено параметрами сети переменного тока и режимами её работы.

Компенсация реактивной мощности, или повышение коэффициента мощности электроустановок промышленных предприятий, имеет большое народнохозяйственное значение и является частью общей проблемы повышения КПД работы систем электроснабжения и улучшения качества отпускаемой потребителю электроэнергии. Потребители электроэнергии, например асинхронные двигатели, для нормальной работы нуждаются как в активной, так и в реактивной мощностях, которые вырабатываются, как правило, синхронными генераторами и передаются по системе электроснабжения трехфазного переменного тока от электростанции к потребителям . Для любой электрической сети должен существовать баланс полной мощности при поддержании нормального режима работы. Реактивная мощность, потребляемая промышленными предприятиями распределяется между отдельными видами электроприемников следующим образом: 65-70 %на асинхроннные двигатели, 20-25 % на трансформаторы, 10 % на ЛЭП, 10%на

Для любой электрической сети должен существовать баланс полной мощности при соблюдении условий поддержания нормального режима с обеспечением необходимой пропускной способности сетей и устойчивости работы электрических установок. При этом необходимо обеспечить баланс реактивной мощности как для системы в целом, так и для отдельных узлов питающей сети с наличием в них необходимого резерва активной мощности для возможности регулирования напряжения. С увеличением реактивной мощности возрастают потерн напряжения в сети и, следовательно, снижается активная мощность, что влечет за собой увеличение мощности оборудования электрических станций, также снижается напряжение у электропрнёмников, что при неизменном значении их мощности приводит к увеличению токов и снижению пропускной способности всех элементов системы электроснабжения.

К методам компенсации реактивной мощности относят применение специальных компенсирующих устройств. К таким устройствам относятся статические конденсаторы, синхронные компенсаторы и перевозбужденные синхронные электродвигатели.

На промышленных предприятиях наибольшее распространение получили статические конденсаторы.

Применение статических конденсаторов по сравнению с другими способами искусственного повышения коэффициента мощности имеет определённые преимущества:

– Потери активной энергии в конденсаторах невелики (активная мощность составляет всего 0,3-0,5% от их номинальной мощности);

Читайте также:  Вега 109 выходная мощность

– Монтаж и эксплуатация конденсаторных установок просты. Для их установки не требуется специальных фундаментов вследствие отсутствия вращающихся частей. Мощность конденсаторной установки легко изменяется в результате увеличения или уменьшения количества конденсаторов;

– Повреждение одного из конденсаторов не отражается на работе всей компенсационной установки, так как поврежденный конденсатор легко заменить новым.

Выбор средств компенсации реактивной мощности.

Правильный выбор средств компенсации для сетей промышленного предприятия напряжением до 1000 В и 6-10 кВ можно выполнить только при совместном решении всех задач проектирования.

Для выбора компенсирующего устройства ( КУ) необходимо знать:

– расчетную реактивную мощность компенсирующего уствройства;

– тип компенсирующего устройства;

– напряжение компенсирующего устройства.

Расчетную реактивную мощность компенсирующего устройства можно определить из соотношения:

Qк.р. = a*Pм*(tgφ – tgφк) (15)

Qк.р. – расчетная мощность компенсирующего устройства, кВар;

a – коэффициент, учитывающий повышение cosφестественным способом, принимается, a= 0,9 ;

tgφ, tgφк – коэффициенты реактивной мощности до и после компенсации.

Принимается cosφк = 0,9, тогда tgφк = 0,48

Qк.р. = 0,9*117,6*(1,33-0,48)= 89,96 кВар (15)

Компенсация реактивной мощности по опыту эксплуатации производят до получения значения cosφк= 0,92…0,95.

Задавшись cosφк из этого промежутка, определяют tgφк

Значения , tgφ выбираются по результатам расчета нагрузок из таблица – 1 «Сводной ведомости нагрузок» .

Задавшись типом компенсирующего устройства, зная Qк.р. и напряжение, выбирают стандартную компенсирующую установку, близкую по мощности.

Применяются комплектные конденсаторные установки (ККУ) или конденсаторы, предназначенные для этой цели.

Выбираю компенсирующую установку УК-0,38-110Н [6, стр. 127, табл. 6.1.1]

Р н=110 кВар 1*110 кВар

После выбора стандартного компенсирующего устройства определяется фактическое значение cosφк:

tgφ ф = tgφ – , (16)

Q к.ст. – стандартное значение мощности выбранного КУ, кВар.

tgφ ф =1,33 – = 1,38 (16)

Источник

Компенсация реактивной мощности

Электрическая мощность, потребляемая промышленными предприятиями и жилыми домами, бывает двух видов. Активная – затрачивается на выполнение полезной, нужной потребителю работы. Реактивная – увеличивает нагрузку на сеть и приводит к дополнительным расходам на электроэнергию.

Треугольник мощностей

Определение

Реактивная мощность не выполняет полезной работы. Она обусловлена наличием у потребителя индуктивной или ёмкостной составляющей нагрузки. На предприятиях реактивная мощность возникает при работе электрических двигателей, трансформаторов или ламп ДРЛ. В домашних условиях это моторы пылесосов, стиральных машин или компрессоров холодильников. На корпусе данных агрегатов часто можно увидеть параметр cosф, называемый коэффициентом мощности. Он количественно характеризует долю реактива.

Обратите внимание! Cosф – параметр крайне нестабильный. Он способен меняться в широком диапазоне с течением года и временем суток. Также коэффициент мощности тесно связан с будними и выходными днями.

Бирка на двигателе

Все перечисленное служит примером источников индуктивной составляющей. Гораздо реже встречается ёмкостная. К её примерам относятся мощные импульсные блоки питания и всё, что во входной части содержит конденсаторы.

Физика процесса

Для понимания процесса образования реактивной мощности следует заострить внимание на двух фактах:

  1. Природа переменного тока такова, что он периодически изменяет своё направление. Т.е. «+» и «-» в розетке переставляются местами 50 раз в секунду. Происходит это не рывками, а плавно по синусоидальному закону. Смена направления тока чем-то схожа с колебаниями качель.
  2. На создание электромагнитного поля, например, обмоткой трансформатора, требуется некоторое время.

В итоге получается следующая картина. Напряжение на выводах обмотки достигает своего пикового значения. Ток из-за индуктивного характера потребителя всё никак не может выйти на максимум. Если нагрузка ёмкостная, то эффект обратный: ток опережает напряжение.

Такое рассогласование источника и потребителя приводит к ощутимым потерям полезной мощности. Поэтому для борьбы с этими нежелательными свойствами индуктивностей и ёмкостей используют специальные устройства компенсации реактивной мощности (УКРМ).

Для чего компенсация реактивной мощности

Компенсировать реактивную составляющую мощности необходимо для повышения эффективности энергосистемы и снижения нагрузки на питающие кабеля и коммутирующие аппараты.

На производстве в основном преобладают потребители индуктивного характера. Для компенсации реактивной мощности, возникающей из-за их работы, чаще всего применяют конденсаторные установки. Их использование позволяет добиться следующих положительных эффектов:

  • снизить нагрузку на сеть, избавив её от бесполезных реактивных токов;
  • ощутимо уменьшить счета на электроэнергию;
  • повысить качество напряжения за счёт устранения помех, шумов и высших гармоник.

Основные компоненты УКРМ

Для компенсации индуктивной составляющей реактивной мощности применяют конденсаторные установки. Иногда их объединяют в целые батареи и оснащают различной коммутирующей аппаратурой. Она необходима для автоматического переключения конденсаторов с целью повышения или понижения конечной ёмкости батареи. Дополнительно требуется к.л. измерительный прибор для отслеживания коэффициента мощности cosф и прочих параметров УКРМ. На сегодняшний день такие контроллеры выполняются на основе микропроцессоров, которые делают всю работу без вмешательства человека.

Читайте также:  Датчик измерения активной мощности дим 200

Конденсаторный компенсатор

Ёмкостная составляющая компенсируется похожим образом. Здесь уже в качестве выравнивающего cosф устройства выступают синхронные двигатели или специальные реакторы (катушки, дроссели). Ёмкостная составляющая свойственна протяжённым кабельным и воздушным линиям, а не самому промышленному оборудованию.

Виды компенсаторов и их принцип действия

Чаще всего в роли компенсирующего устройства применяется либо батареи конденсаторов, либо двигатели. При этом может использоваться как один компенсатор, так и множество подключенных параллельно.

В течение дня баланс мощности в сети может изменяться, на что УКРМ должно реагировать соответствующим образом. С этой точки зрения компенсаторы бывают:

  • нерегулируемые – без возможности переключения составных элементов;
  • автоматические – компенсатор сам отслеживает cosф, производит расчеты и решает, какое количество конденсаторов следует добавить в схему;
  • с ручным управлением – человек сам анализирует cosф по приборам и производит соответствующие переключения.

В зависимости от условий эксплуатации выделяют следующие типы коммутирующих устройств:

  • контакторные – только статические переключения;
  • тиристорные – работа в реальном времени;
  • вакуумные выключатели – для напряжений свыше 1 кВ.

Определение емкости конденсаторов

При проектировании УКРМ следует уделить внимание расчету ёмкости и мощности конденсаторных установок. Важно это по той причине, что в случае неправильного выбора этих параметров установка может нанести электросети больше вреда, чем пользы. Формула для расчета необходимой ёмкости конденсатора имеет следующий вид.

Ёмкость конденсатора

Здесь:

  • C – ёмкость конденсаторной установки, Ф;
  • U – сетевое напряжение, В;
  • f – частота, Гц;
  • Q – реактивная мощность конденсатора, вар;
  • p – 3.14.

Переменная Q, в свою очередь, определяется по следующему выражению.

Реактивная мощность конденсатора

Где:

  • P – активная мощность потребителя;
  • К – коэффициент, подбираемый из таблицы.

Таблица для расчёта УКРМ

Дополнительная информация. На просторах интернета полно ресурсов, содержащих в себе калькуляторы для онлайн расчета различных параметров компенсаторов.

Компенсаторы реактивной мощности в квартире

Многие промышленные предприятия, особенно крупные, применяют в целях экономии устройства компенсации реактивной мощности. Однако этот трюк не пройдёт в обычной квартире. Вытекает это из ряда причин:

  1. Бытовые однофазные счётчики электроэнергии, используемые в жилых домах, не способны вычислять реактивную мощность. Соответственно, никто не сможет взыскать за неё оплату. Особенно это относится к старым индукционным счётчикам.
  2. Организации, поставляющие электроэнергию, ведут учёт реактивной мощности только для крупных промышленных предприятий. Установка подобных устройств в жилых домах не является требованием ПУЭ.
  3. С технической точки зрения, проблематично и дорого будет рассчитать УКРМ для каждой квартиры или тем более поставить автоматические системы на микропроцессоре, ведь данные приборы стоят внушительных денег.

Cosф бытовых потребителей

Важно! По интернету гуляют предложения купить мошенническую чудо-коробочку. Она подключается к розетке и тем самым избавляет квартиру от излишков реактивной мощности. Как показывают обзоры, внутри этого прибора не содержится ничего, кроме светодиода. Соответственно, такое устройство никак не поможет сэкономить.

Эффективность применения конденсаторных установок

История применения метода компенсации реактивной мощности охватывает ещё советский период. Его экономическая эффективность на промышленных предприятиях доказана исследованиями и десятками лет практического использования.

Конденсаторные УКРМ предназначены в основном для компенсации реактивной мощности электрических двигателей. Энергия, потребляемая асинхронными моторами, может доходить до 40 % от всей нагрузки предприятия. Поэтому экономии на двигателях уделяют особое внимание. Масло в огонь подливает и то, что мотор, работающий с номинальной нагрузкой на валу, имеет cosф = 0,75-0,8. Это считается нормой. Однако тот же двигатель без нагрузки имеет гораздо более низкий коэффициент мощности порядка 0,3. Использование УКРМ позволяет повысить cosф до 0,99. Это хороший показатель, ведь, чем ближе этот параметр к единице, тем эффективнее расходуется электроэнергия.

Наличие устройств, компенсирующих реактивную мощность, благотворно сказывается на расходах промышленного предприятия. Помимо этого, уменьшается нагрузка на электрическую систему объекта. Это позволяет снизить сечение и конечную стоимость воздушных и кабельных линий, а также уменьшить долгосрочные затраты на их ремонт и обслуживание.

Видео

Источник

Компенсация реактивной мощности как средство сокращения затрат

В последние годы наблюдается значительный рост производства и развитие инфраструктуры городов. В связи с этим увеличивается число и мощности электроприемников, использующихся на производствах в основных технологических и вспомогательных циклах, а объекты инфраструктуры применяют все большее количество осветительных аппаратов для рабочего освещения, рекламы и дизайна. Соответственно увеличивается потребляемая электрическая мощность.

В зависимости от вида используемого оборудования нагрузка подразделяется на активную, индуктивную и емкостную. Наиболее часто потребитель имеет дело со смешанными активно-индуктивными нагрузками. Соответственно, из электрической сети происходит потребление как активной, так и реактивной энергии.

Активная энергия преобразуется в полезную – механическую, тепловую и пр. энергии. Реактивная же энергия не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей в электродвигателях, трансформаторах, индукционных печах, сварочных трансформаторах, дросселях и осветительных приборах. Показателем потребления реактивной энергии (мощности) является коэффициент мощности сos j . Он показывает соотношение активной мощности Р и полной мощности S, потребляемой электроприемниками из сети:

Читайте также:  Mystery mvc 1127 мощность всасывания

Значения коэффициента мощности нескомпенсированного оборудования приведены в табл. 1, а усредненные значения коэффициента мощности для систем электроснабжения различных предприятий – в табл. 2. В оптимальном режиме показатель должен стремиться к единице и соответствовать нормативным требованиям.

Таким образом, видно, что при отсутствии компенсации реактивной мощности потребитель переплачивает за потребление реактивной энергии 30–40% общей стоимости.

Срок окупаемости конденсаторных установок можно оценить следующим образом:

где З1 – стоимость конденсаторной установки, руб.;

З2 – затраты на электроэнергию без компенсации, руб./мес.;

З3 – затраты на электроэнергию при применении конденсаторных установок, руб./мес.

Применение конденсаторных установок

Основы компенсации реактивной мощности

Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети. Реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии, а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок). Наглядно это представленно на рисунке.

Использование конденсаторных установок позволяет:

— разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;

— снизить расходы на оплату электроэнергии;

— при использовании определенного типа установок снизить уровень высших гармоник;

— подавить сетевые помехи, снизить несимметрию фаз;

— сделать распределительные сети более надежными и экономичными.

На практике коэффициент мощности после компенсации находится в пределах от 0,93 до 0,99.

Виды компенсации

Единичная компенсация

предпочтительна там, где:

— требуется компенсация мощных (свыше 20 кВт) потребителей;

— потребляемая мощность постоянна в течение длительного времени.

Групповая компенсация

применяется для случая компенсации нескольких расположенных рядом и включаемых одновременно индуктивных нагрузок, подключенных к одному распределительному устройству и компенсируемых одной конденсаторной батареей.

Единичная компенсация

Групповая компенсация

Централизованная компенсация

Для предприятий с изменяющейся потребностью в реактивной мощности постоянно включенные батареи конденсаторов не приемлемы, т. к. при этом может возникнуть режим недокомпенсации или перекомпенсации. В этом случае конденсаторная установка оснащается специализированным контроллером и коммутационно-защитной аппаратурой. При отклонении значения сos j от заданного значения контроллер подключает или отключает ступени конденсаторов. Преимущество централизованной компенсации заключается в следующем: включенная мощность конденсаторов соответствует потребляемой в конкретный момент времени реактивной мощности без перекомпенсации или недокомпенсации.

Централизованная компенсация

При выборе конденсаторной установки требуемая мощность конденсаторов может определяться как

где tg j 1 – коэффициент мощности потребителя до установки компенсирующих устройств;

tg j 2 – коэффициент мощности после установки компенсирующих устройств (желаемый или задаваемый энергосистемой коэффициент).

где Ew – показания счетчика активной энергии, кВт•ч;

Eq – показатель счетчика реактивной энергии, кВАр•ч;

T – период снятия показаний счетчиков электроэнергии, ч.

Технико-экономический эффект, ожидаемый в результате применения конденсаторных установок, представлен в табл. 3.

Конденсаторные установки компенсации реактивной мощности

Для реализации задачи компенсации реактивной мощности на стороне 0,4 кВ ЗАО «ЭТМ» рекомендует использовать и предлагает к поставке конденсаторные установки типа УК, УКМ58, УКМ70 и УКМФ71, на стороне 6,3 и 10,5 кВ – установки типа УКЛ(П)-56 производства ЗАО «Электро-интернешнл». Данные конденсаторные установки являются наиболее адаптированными к требованиям российских энергосетей и потребителей. На протяжении длительного срока эксплуатации они зарекомендовали себя как качественное, надежное оборудование, позволяющее решать любые задачи компенсации реактивной мощности.

В зависимости от типоисполнения установки изготавливаются в различном конструктивном исполнении и комплектации (табл.4).

Преимущества установок обуславливаются использованием:

— самовосстанавливающихся сегментированных конденсаторов, что обеспечивает их надежность, долговечность и низкую стоимость при профилактических и ремонтных работах;

— специальных контакторов опережающего включения, увеличивающих срок службы контакторов;

— специальных контроллеров нескольких типов, обеспечивающих автоматическое регулирование cosj, в том числе с возможностью передачи данных на PC и возможностью контроля в сети высших гармоник тока и напряжения;

— индикации при неисправностях;

— фильтра высших гармонических;

— эмалевой или порошковой окраски (по желанию заказчика).

По желанию заказчика возможно изготовление и поставка конденсаторных установок напряжением 0,4 кВ, мощностью до 1 200 кВАр.

Вся продукция имеет соответствующие сертификаты.

ООО «ЭТМ» является официальным представителем завода «Электро-интернешнл» и предлагает услуги по расчету требуемой установки по заданным параметрам, поставке оборудования и отгрузке продукции со склада.

Поделиться статьей в социальных сетях:

Источник

Adblock
detector