Меню

Характеристика тока анода от напряжения анода

Построение вольтамперной характеристики диода и измерения его параметров

Страницы работы

Содержание работы

Лабораторная работа №1

Вольт-амперная характеристика и параметры вакуумного диода

Цель работы: Получить навыки построения вольтамперной характеристики диода и измерения его параметров.

1. Теоретическая часть

1.1. Эмиссия электронов с поверхности катода электровакуумной лампы

Разогретый катод обеспечивает возможность эмиссии электронов со своей поверхности в вакуумное пространство. Если на анод диода подать положительное напряже­ние по отношению к катоду, то под действием сил электрического поля электроны, эмитируемые катодом, будут перемещаться по на­правлению к аноду. Однако бла­годаря своему отрицательному заряду элек­троны, находящиеся в пространстве между катодом и анодом, создают поле, препятствую­щее движению электронов к аноду. На рис.1 по­казаны графики распределения потенциала и градиента потенциала для диода с плоскими параллельными электродами.

Рис. 1. Распределение по­тенциала U и градиента потен­циала для диода с плоскими параллельными электродами, когда ток диода ограничен пространственным зарядом

Для за­данного напряжения анод — катод пространст­венный ток между катодом и анодом увеличи­вается только до тех пор, пока тормозящее поле не превышает ускоряющее поле анода. Ток анода определяется как температурой катода, так и напряжением анода (рис. 2, 3).

Рис. 2. Зависимость анодного тока лампового диода от напряжения на аноде при различных значениях температуры (Т) катода

Рис. 3. Зависимость анодного тока диода от температуры катода при различных значениях напряжения на аноде Е

Максимальная мощность, которая может быть рассеяна анодом лампы, определяется скоростью отвода тепла от анода и максимально допустимой температурой анода. Максималь­ная температура анода ограничивается тремя факторами: количеством газа, выделяющегося из материала анода при высоких температурах, допустимой максимальной температурой стек­лянного баллона и температурой плавления материала анода. Анод отдает тепло излучением и теплоотводом по крепящим анод деталям.

1.2. Характе­ристика вакуумного диода

Свойства вакуумного диода полностью харак­теризуются графи­ком зависимости анодного тока от напряжения на аноде. Этот график называется вольт-амперной характеристикой диода. На рис. 4 изобра­жена вольт-амперная характеристика (ВАХ) диода, используемого в качестве детектора сигнала и выпрямителя напряжения.

Рис. 4. Вольт-амперная характеристика типового диода

Различают статические и рабочие характеристики диодов. Наиболее просто снять статические характеристики лампы в ре­жиме постоянного тока. Под рабочей характеристикой диода понимают зависимость анод­ного тока Iа от напряжения источника питания в анодной цепи Еa при наличии в ней сопротивления нагрузки Rа(рис. 5). Так как Uaи Еа в рабочем режиме друг другу не равны, то рабочая характеристика должна отличаться от статической. Построение рабочей характеристики осуществляют экспериментально, либо путём графического построения, если известна статическая характеристика и величина сопротивления нагрузки.

Рис. 5. Вакуумный диод с наг­рузкой в анодной цепи

Рис. 6. Статическая и рабочая характеристики диода

1.3. Параметры диода

Для того чтобы иметь возможность сравнивать свойства различ­ных ламп между собой и характеризовать лампу как элемент электри­ческой схемы, пользуются величинами, называемыми парамет­рами лампы. В зависимости от того, какие свойства лампы нуж­но охарактеризовать, различают электрические параметры, параметры механического, климатического, теплового режимов и т. д. Электри­ческие параметры в свою очередь можно подразделить на параметры, характеризующие:

— условия токопрохождения через лампу, например, крутизну характеристики,

— рекомендуемый режим работы лампы в схеме, например, напряжение накала, анодное напряжение,

— предельно допустимый электрический режим, например, предельно допустимую мощность, рассеиваемую анодом и т. п.

Основными параметрами лампы являются параметры, характеризующие условия токопрохождения. Для характеристики этих условий используются величины, представляющие собой отношение изменений токов в цепях электродов к изменениям потенциалов электродов. При этом могут сопоставляться изменения тока и потенциала как одного и того же, так и разных электродов.

Кроме этих основных величин в случае ламп с сетками в качестве параметров широко используются еще величины, сравнивающие действие изменения потенциале двух каких-либо электродов на значение тока в цепи того или иного электрода. У ламп, где имеется только два электрода параметры этого вида отсутствуют. Следует обратить внимание на то, что параметры, характеризующие условия токопрохождения через лампу, в отличие от параметров других видов являются величинами дифференциальными и поэтому обычно называются дифференциальными параметрами ламп.

К основным электрическим параметрам вакуумного диода относятся:статическое внутреннее сопротивление, динамическое внутреннее сопротивление, крутизна характеристики диода.

Анодное напряжение Uа— это напряжение между анодом и катодом.

Анодный ток Iа — это ток, протекающий в цепи анода.

Напряжение накала Uн – лежит в пределах нескольких вольт, а для наиболее распространенных вакуумных диодов равен 6,3 В.

Допустимая мощность рассеяния на аноде Ра доп выделяется при бомбардировке его электронами и при разогревании анода до некоторой допустимой температуры. Превышение Ра доп может привести к расплавлению анода. Для современных анодов Ра доп колеблется в пределах от долей ватт до десятков ватт.

Максимальный анодный ток Ia max огра­ничен током эмиссии катода, а также перегревом ка­тода и анода. Значения Ia max обычно лежат в преде­лах от 0,01 до 1 А.

Максимальное обратное напряжение U обр max — это такое максимальное анодное напряже­ние обратной полярности, при котором еще не насту­пает пробой промежутка между анодом и катодом. Оно зависит от электрической прочности диода и ле­жит в пределах от десятков вольт до десятков кило­вольт.

Статическое внутреннее сопротивление диода Ri определяется как

где Ua – напряжение на аноде, В; Iа – анодный ток, A.

Динамическое внутреннее сопротивление диода ri определяется как величина, обратная крутизне вольт-амперной характеристики в любой точке, или отношение приращения анод­ного напряжения к приращению анодного тока на рабочем участке характеристики

[Ом] при Т = const, (1.2)

где Т – температура катода.

Для выпрямительных ламп (кенотронов) его значения достигают порядка нескольких сотен Ом.

Крутизна характеристики диода. Крутизна характеристики Sопределяется, используя рис. 4 и в соответствие с выражением (1.2), как

1.4. Построение нагрузочной прямой вакуумного диода

В реальных электрических схемах кроме диода имеется активная и реактивная нагрузка. Пример упрощенной электрической схемы включения вакуумного диода с активной нагрузкой в цепи анода представлена на рис. 5.

Уравнение, выражающее зависимость между напряжением и током представлено ниже:

где Ua — падение напряжения на диоде; Ia × Ra падения напряжения на сопротивлении Rа ; Eа — напряжение источника питания.

Значения Uaи Iа можно определить, если написать уравнение вольт-амперной характеристики и одновременно решить совместно уравнения (1.1) и (1.4).

Однако графическое решение этих двух уравнений проще. На рис. 7 изображена зависимость анодного тока от напряжения на аноде диода. Это график уравнения вольт-амперной характеристики диода.

Рис.7. Построение нагрузочной прямой на характеристике диода

Читайте также:  Мощность в цепи переменного тока лекция

Источник

Снятие анодных характеристик (ВАХ) диода при различных напряжениях накала катода

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ (МИИТ)

Кафедра «Физика-2»

ЭЛЕКТРОМАГНЕТИЗМ

Работы 19, 27, 72, 74, 75

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ЛАБОРАТОРНЫМ РАБОТАМ

по дисциплине «Физика»

М о с к в а — 2001

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ (МИИТ) ____________________________________________________

Кафедра «Физика-2»

У тв е р ж д е н о

Работы 19, 27, 72, 74, 75

К ЛАБОРАТОРНЫМ РАБОТАМ

по дисциплине «Физика»

для студентов всех специальностей

Под редакцией

канд. физ.- мат. наук, доц. А. П. ПРУНЦЕВ,

канд. физ.-мат. наук, доц Л.М. КАСИМЕНКО.

М о с к в а — 2001

УДК 537.8: 621.318.3

ЭЛЕКТРОМАГНЕТИЗМ. Работы № 19, 27, 72, 74, 75:

Методические указания к лабораторным работам по

дисциплине “физика”. / Под ред..

А. П. Прунцева, Л.М. Касименко. — М.: МИИТ, 2001. — 74 с.

Методические указания соответствуют программе и учебным планам по курсу общей физики, в них представлены: краткая теория, задания к пяти лабораторным работам по физике и методика их выполнения.

Авторы и составители: В. Г. Колотилова (работа № 19),

Б. А. Курбатов,С. Г. Стоюхин (работа №27),

С. Г. Стоюхин (работы №72, 74),

А. П. Прунцев (работа № 75).

©Московский государственный

университет путей сообщения (МИИТ), 2001

Работа 19

ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ И

ХАРАКТЕРИСТИК ЭЛЕКТРОННЫХ ЛАМП

Цель работы: Изучение принципа действия электронной лампы и снятие характеристик диода и триода; определение параметров триода в отсутствие сопротивления в цепи анода.

Приборы и принадлежности. Исследуемая лампа, выпрямитель, миллиамперметр, вольтметры.

Введение

Электронная лампа представляет собой стеклянный, металлический или керамический баллон с впаянными металлическими электродами. В баллоне создается разрежение воздуха до давления порядка 10 -7 мм рт. ст. (примерно 10 Па). Один из электродов лампы (катод) накаливается пропусканием по нему электрического тока (прямой накал) или с помощью подогревного устройства (косвенный накал) и является источником электронов, покидающих поверхность металлического электрода.

Явление испускания электронов нагретыми телами лежит в основе работы электронной лампы и называетсятермоэлектронной эмиссией.

Катод лампы обычно изготавливается в виде нити из тугоплавкого металла. При нагревании катода электроны эмиссии образуют вокруг него отрицательный пространственный заряд, так называемое электронное облако. Вблизи катода оно удерживается кулоновскими силами, которые возникают между электронным облаком и положительно заряженным в результате эмиссии электронов поверхностным слоем металла.

Второй электрод являетсяанодом лампы. При положительном потенциале анода относительно катода электроны эмиссии движутся под действием электрического поля между катодом и анодом, и в лампе возникает электрический ток.

Присутствие пространственного заряда приводит к такому перераспределению потенциала между катодом и’ анодом, которое оказывает тормозящее действие на электроны. С возрастанием положительного потенциала анода плотность электронного облака постепенно уменьшается и при некотором напряжении между катодом и анодом обращается в ноль. При этом движение электронов определяется электрическим полем, зависящим только от разности потенциалов между катодом и анодом и конфигурации электродов лампы.

Диод. Простейшей электронной лампой является диод (двух электродная лампа). Для того, чтобы диод пропускал электрический ток, катод должен иметь отрицательный, а анод — положительный потенциал. Перемена знака потенциала анода позволяет «запереть» лампу, т.е. прекратить прохождение тока через нее. Односторонняя проводимость диода используется для выпрямления переменного тока.

Важнейшей характеристикой диода является зависимость силы тока, текущего через лампу (анодного тока), от разности потенциалов между катодом и анодом (анодного напряжения). Ее называютвольтамперной или анодной характеристикой диода (ВАХ).

Анодный ток зависит от анодного напряжения и от температуры катода. При постоянной температуре катода анодный ток возрастает с увеличением анодного напряжения . Поскольку механизм возникновения электрического тока в этом случае отличается от механизма возникновения тока в проводниках, то зависимость анодного тока от анодного напряжения не описывается законом Ома.

На рис.1 представлена типичная вольтамперная характеристика диода. Для участка кривой abc характерно нелинейное возрастание анодного тока, на участке cd анодный ток почти не изменяется при увеличении анодного напряжения. Это объясняется тем, что при некотором анодном напряжении подавляющее число электронов эмиссии достигает анода, и лишь незначительная их часть рассеивается, не достигнув анода.

Максимальное значение анодного тока при данной температуре катода называетсятоком насыщения лампы. Сила тока насыщения численно равна заряду всех электронов, испускаемых катодом в единицу времени:

где n — число электронов, испускаемых катодом в единицу времени,

e величина заряда электрона.

Рис.1. Вольтамперная характеристика диода

Плотность тока насыщения зависит от температуры катода и работы выхода электрона из металла. Эта зависимость выражается формулой Ричардсона-Дэшмана:

где В — эмиссионная постоянная, одинаковая для всех металлов;

Т — абсолютная температура катода;

k — постоянная Больцмана;

А — работа выхода электрона из металла.

Таким образом, увеличение напряжения накала вызывает повышение температуры катода, и, следовательно, возрастание анодного тока при всех значениях анодного напряжения, в том числе и тока насыщения.

Зависимость анодного тока от анодного напряжения на участке кривой ab (см. рис.1) приблизительно может быть описана законом Богуславского-Ленгмюра, называемым «законом трех вторых»:

где В’ — коэффициент, зависящий от формы и взаимного расположения катода и анода при прочих одинаковых условиях.

Семейством анодных характеристик диода (ВАХ) является совокупность графиков, изображающих зависимости анодного тока от анодного напряжения U при различных фиксированных напряжениях накала U , т.е.

Триод. Это электронная лампа с тремя электродами (катод, анод, сетка). Сетка расположена между катодом и анодом вблизи катода. При этом между сеткой и катодом создается сильное электрическое поле. Поэтому влияние потенциала сетки на анодный ток более значительно, чем влияние потенциала анода.

Назначением сетки является управление анодным током лампы (отсюда название сетки — управляющая или управляющий электрод). При положительном потенциале сетки усиливается ускоряющее электрическое поле между катодом и анодом, и анодный ток увеличивается, а при отрицательном — это поле ослабляется, и анодный ток уменьшается по сравнению с током лампы при нулевом потенциале сетки. При некотором отрицательном потенциале сетки ток через лампу прекращается, т.е. лампа оказывается «запертой».

Минимальное по абсолютной величине и отрицательное по знаку напряжение между сеткой и катодом, при котором ток через лампу не течет, называетсянапряжением запирания.

При постоянном напряжении накала катода анодный ток в триоде зависит от разности потенциалов между катодом и анодом (анодного напряжения) и напряжения между сеткой и катодом (сеточного напряжения) , т.е. является функцией двух переменных:

Читайте также:  Электрический ток вариант 3 определите сопротивление электрической лампы

Зависимость анодного тока от анодного напряжения при фиксированном значении сеточного напряжения и неизменном напряжении накала катода называетсяанодной характеристикой триода (рис.2, а):

при =const и =const.

Зависимость анодного тока от сеточного напряжения при фиксированном значении анодного напряжения и неизменном напряжении накала катода называетсяанодно-сеточной характеристикой триода (рис.2, б):

при =const и =const.

Важнейшими параметрами триода являются:внутреннее сопротивлениеR , крутизна анодно-сеточной характеристики S икоэффициент усилениялампы . Эти параметры зависят от сопротивления в цепи анода. В данной работе сопротивление в цепи анода отсутствует. Такой режим и параметры, соответствующие ему, называютсястатическими.

Выясним смысл перечисленных параметров триода, для чего рассмотрим зависимость анодного тока от анодного и сеточного напряжения при постоянном напряжении накала катода.

Полный дифференциал анодного тока:

. (3)

Индексы при частных производных означают, что в первом слагаемом дифференцирование производится при U =const , а во втором — при =const.

Внутреннее дифференциальное сопротивление R лампы определяется из соотношения:

и показывает, на сколько вольт надо изменить анодное напряжение при неизменном сеточном, чтобы анодный ток изменился на единицу.

Рис.2. Анодная (а) и анодно-сеточная (б) характеристики триода

называетсякрутизной анодно-сеточной характеристики; она показывает скорость изменения анодного тока при изменении потенциала сетки, когда анодное напряжение постоянно.

позволяет сравнить влияние приращений анодного и сеточного напряжений на анодный ток и называетсякоэффициентом усиления лампы. Из формул (4), (5) и (6) видно, что

Приведенные параметры триода определяются по измеренным анодным и анодно-сеточным характеристикам.

На рис.3 представлено семейство анодных характеристик триода.

Кривые 1 и 2 сняты при близких значениях сеточных напряжений U и U . Для определения параметров триода на графике выбирается некоторое значение анодного тока в пределах прямолинейной части характеристик I и II (точка А). Через эту точку проводится прямая, параллельная оси абсцисс, пересекающая кривые 1 и 2 (точки В, С), а через точку С проводится прямая, параллельная оси ординат, до пересечения с кривой 2 (точка D).

Характеристический треугольник BCD содержит все данные, необходимые для определения параметра триода:

По этим данным вычисляются

Как указывалось выше, параметры триода можно определить и по анодно-сеточным характеристикам, представленным на рис. 4.

Из рис.4 следует, что

Чтобы иметь возможность сравнивать значения параметров, вычисленных по формулам (8) и (9), необходимо выбирать на рис.3 и 4 близкие режимы работы.

Рис.4. Анодно-сеточные характеристики триода.

Принципиальная схема включения лампы для снятия характеристик приведена на рис.5, где Л — исследуемая лампа; А — анод; С — сетка; К — катод; мА — миллиамперметр для измерения анодного тока; V и V — вольтметры для измерения анодного и сеточного напряжений; В — выпрямитель, являющийся источником питания лампы.

В режиме отключения сетки ( =0) лампа работает как диод. В режиме с включенной сеткой лампа работает как триод.

Рис.5. Принципиальная схема включения лампы.

Порядок выполнения работы

1. Ознакомьтесь с установкой, измерительными приборами, определите цену деления приборов.

2. Ознакомьтесь с указаниями к работе, приведенными на стенде, и получите разрешение на включение установки.

Снятие анодных характеристик (ВАХ) диода при различных напряжениях накала катода.

1. Установите напряжение накала U и после прогрева катода приступите к снятию анодной характеристики, т.е. измерению силы анодного тока при различных значениях анодного напряжения, указанных на стенде. При этом следите, чтобы напряжение на сетке всегда было равным нулю (U =0). Результаты измерений занесите в таблицу 1.

2. Повторите подобные измерения при напряжении накала катода U .

Источник



Анодная характеристика

Анодная характеристика диода выражает зависимость анодного тока от анодного напряжения при постоянном напряжении накала. Действительная характеристика (рис. 16.5) отличается от характеристики по закону степени трех вторых, которая изображена штрихами на рисунке. Это различие объясняется тем, что закон степени трех вторых является приближенным, так как при его выводе сделан ряд упрощающих предположений. Начальным током I часто пренебрегают и изображают характеристику выходящей из нулевой точки.

Рис. 16.6. Определение крутизны диода методом двух точек

С увеличением напряжения накала точка А сдвигается влево, так как начальная скорость электронов увеличивается. Средний участок (БВ) характеристики приближенно считают линейным. Участок ВГ соответствует плавному переходу от режима объемного заряда к режиму насыщения. В области насыщения (участок ГД) при повышении анодного напряжения анодный ток растет. Это объясняется эффектом Шоттки и дополнительным нагревом катода от анодного тока. У оксидных катодов эффект Шоттки выражен сильно и дополнительный нагрев от анодного тока значителен, так как сопротивление оксидного слоя большое и анодный ток соизмерим с током накала. Рост анодного тока в режиме насыщения у оксидного катода настолько велик, что переход от режима объемного заряда к режиму насыщения по характеристике обычно установить нельзя.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Что такое анод и катод: объясняю простыми словами

Для корректной работы полупроводниковых приборов, работающих в цепях с постоянным током, электроды радиоэлементов необходимо подключать с учетом их полярности. Неправильное подключение может привести к выходу из строя радиоэлемента либо к отказу в работе электронного прибора. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.

Часто эти электроды обозначаются на схемах соответствующими символами «+» или «–», либо определяются по схематическому изображению радиоэлемента. На корпусах деталей иногда проставляется точка или другая метка, позволяющая определить направление тока на конкретном электроде. Иногда полярность выводов приходится определять по специальным таблицам или с помощью измерительного прибора.

Понятие анода и катода

Для лучшего понимания терминов дадим определения этих понятий.

Под данным термином будем подразумевать электрод, по которому электрический ток втекает в разглядываемый прибор. При этом подразумевается, что электрический ток образуется потоком положительных зарядов. В действительности, по металлическим проводникам перемещаются электроны (носители отрицательных зарядов), которые движутся в сторону положительного полюса источника электрического тока.

Проще говоря, положительным электродом будем считать анод, а отрицательным электродом – катод. При подключении радиоэлементов следует соблюдать их полярность, руководствуясь обозначениями на схемах.

Катод

Это электрод, по которому электрический ток вытекает с прибора (подразумевается конвенциальное понимание тока, в виде потока положительных зарядов). Таким образом, если к аноду подключается провод с положительным потенциалом, то к катоду – клеммы с отрицательными потенциалами.

Вышеуказанные термины применяются по отношению к гальваническим элементам. В гальванике анод – это электрод, на поверхности которого проходит реакция окисления металла. Названия электродов встречаются:

  • в химии;
  • физике;
  • электротехнике;
  • радиоэлектронике.
Читайте также:  Переменный электрический ток активное сопротивление электрическая схема

При монтаже радиодеталей очень важно не перепутать электроды. Для этого необходимо знать, как определить их назначение.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Электролиз

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента.

Гальванический элемент

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу. То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

ДиодРис. 3. Диод Электроды светодиодаРис. 4. Электроды светодиода

Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Транзистор на схемах и его электроды

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Анод и катод: где плюс, а где минус?

Из сказанного выше следует, что ток всегда течет в направлении от анода к катоду. Вывод один – на анод поступает плюс, а катод подсоединяется к минусу. Придерживаясь этого правила можно безошибочно определить, где плюс, а где минус.

Где плюс и минус анод катод

Вот так можно запомнить:)

В гальванотехнике на катоде происходит реакция восстановления. То есть положительные ионы из раствора оседают на катоде. По этому признаку определяем знак минус.

Как определить катод и анод радиодеталей мы рассмотрели выше. Если есть схема устройства то по ней довольно легко можно указать направление тока, и, соответственно, назначение электродов. При отсутствии схемы пользуйтесь признаками и метками на корпусах деталей.

Отдельно заострю ваше внимание на элементах питания. Обычно «+» указывается на гальванических устройствах, а на аккумуляторах часто маркируются обе клеммы. В аккумуляторах автомобильного типа плюсовую клемму делают толще. По этому признаку также можно определить полярность полюсов.

В качестве выводов см. рисунок 6.

Выводы

Рис. 6. Выводы

Цифрами обозначено:

  • 1– анод;
  • 2 – электролит;
  • 3 – катод;
  • 4 – источник тока.

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Поясняющее видео

Источник

Характеристика тока анода от напряжения анода



Зависимость величины анодного тока

­Величина анодного тока зависит от величины анодного напряжения. Если анодное напряжение равно нулю, анод не притягивает электроны и анодный ток равен нулю. При малом положительном напряжении на аноде анод притягивает часть электронов из электронного облака, окружающего катод; чем больше анодное напряжение, тем большее количество электронов летит к аноду и тем меньше электронов возвращается на катод. Следовательно, с увеличением анодного напряжения анодный ток возрастает. Наконец, при определенном, достаточно большом анодном напряжении все электроны, испускаемые катодом за единицу времени, притягиваются к аноду и ни один из них не возвращается обратно на катод; электронного облака вокруг катода больше не существует. Очевидно, если после этого продолжать увеличивать анодное напряжение, анодный ток увеличиваться больше не будет. Наибольший анодный ток, который получается, когда все электроны, испускаемые катодом, притягиваются к аноду, называется током насыщения.

Если анодное напряжение отрицательно, то анод не притягивает электроны, а, наоборот, отталкивает их. Так как анод не испускает электронов, то тока в анодной цепи в этом случае нет, что равносильно размыканию анодной цепи. В таком случае принято говорить, что лампа заперта (закрыта). Таким образом, диод пропускает ток только в одном направлении: от анода к катоду, когда напряжение на аноде положительно. Это основное свойство диода называется односторонней проводимостью. Важно заметить, что диод, как и другие электронные лампы, не подчиняется закону Ома. Ток, текущий через лампу, хотя и увеличивается при увеличении анодного напряжения, однако он не пропорционален напряжению: при увеличении анодного напряжения в два раза ток в одном случае может возрасти в полтора раза, в другом случае — в три раза, а в третьем случае — вовсе не измениться. Зависимость анодного тока от анодного напряжения удобно изображать графически. График, изображающий зависимость анодного тока от анодного напряжения, называется характеристикой диода.

Обратите внимание: каждый день происходит что-то новое и часто это необычайно важно, большинство из этого мы узнаем из новостных передач, но что касается новинок в промышленности, производстве и строительстве — чаще всего подобное не объявляется во всеуслышание. Для тех, кого интересуют новости строительной отрасли, существуют целые информационные порталы в интернете, именно там можно найти самые свежие данные. ­

Читайте также:  Как переводится электрический ток

Источник

Зависимость тока анода от напряжения анода при разных токах накала.

I. Снять характеристики Iа и Uа, воспользовавшись учебным стендом «Снятие характеристик вакуумного диода».

1. Повернуть ручки регулировки тока накала и анодного напряжения против часовой стрелки до упора (минимальное значение).

2. Включить стенд в сеть переменного тока напряжением 220 В.

3. Выждать 2-3 минуты (время, необходимое для установки параметров схемы).

4. Установить ток накала 150 мА.

5. Выждать 2-3 минуты (время, необходимое для прогрева катода лампы).

6. Изменить ток накала в пределах 140-160 мА (по заданию преподавателя), с помощью регулятора тока накала.

7. Установить напряжение анода 10 В с помощью регулятора напряжения; установить точку подключения анодного напряжения А с помощью коммутатора и записать показания приборов в таблицу. Переключить коммутатором положение В и записать показания приборов в таблицу.

8. Аналогично п.7 изменяем напряжение анода ступенями по 10 В, меняя точку подключения коммутатором. Полученные данные занести в таблицу№1.

*После каждого изменения тока накала необходимо выжидать 1-2 минуты для прогрева катода лампы.

9. По полученным данным построить зависимость тока анода (сред.знач.) от напряжения анода при разных токах накала.

II. Определение отношения заряда электрона к его массе

1. По формуле (1) определить отношение e/m.

2. Вычислить теоретическое значение e/m и посчитать погрешность. Сделать вывод.

III. Нахождение характеристик диода.

Найти крутизну и сопротивление диода по формуле (8) и (9). И мощность, рассеянную на аноде по формуле (10).

IV. Определение работы выхода электрона и заряда электрона.

  1. По графику Iа(Uа) определите Iнас.
  2. По таблице№2 определите для данного тока накала Iн температуру катода T. (d=2мм)
  3. Посчитайте ln(Iнас./SкT) и постройте график зависимости этой величины от 1/Т.
  4. По графику определите работу выхода.
  5. По формуле (6) посчитайте напряженность поля для двух произвольных напряжений. По графику зависимости Iа(Uа) определите соответствующие значения Iа.
  6. Используя формулу(5), по данным полученным в пункте 5, найдите заряд электрона. Сравните свои результаты с табличными и сделайте вывод.

6 Контрольные вопросы

1. Что представляет собой явление термоэлектронной эмиссии?

2. Что такое работа выхода электрона?

3. Объясните устройство и принцип действия диода.

4. Какие параметры характеризуют работу двухэлектродной электронной лампы?

5. Объясните вольтамперную характеристику диода.

6. Объясните устройство катода. Какие типы катодов используются при конструировании диода?

Литература

1. Савельев И.В. Курс общей физики, т.2, М., Наука, 1982

2. Детлаф А.А., Яворский Б.М., Милковская Л.Б., Курс физики, т.2, М.: Высшая школа, 2002

3. Трофимова Т.И. Курс физики, М: Высшая школа, 2002 г

4. Грабовский Р.И. Курс физики, Сб.П.: Лань, 2002

5. Гольдин Л.Л., Игошин Ф.Ф., Козел С.М. и др. Руководство к лабораторным занятиям по физике. Под редакцией Гольдина,

6. Физический практикум. Под редакцией Ивероновой В.И., М.: Физматгиз, 1962.

7. Маликов С.Ф., Тюрин Н.И. Введение в метрологию. Изд-во комитета стандартов мер и измерительных приборов при Мин. СССР, 1966.

8. Основные положения Государственной системы обеспечения единства измерений/терминология метрологическая/ ГОСТ 16236-70.

9. Чертов А.Г. Международная система единиц измерения, М.: Высшая школа, 2000.

Приложение

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ СИСТЕМ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ С МЕХАНИЧЕСКИМИ ПРОТИВОДЕЙСТВУЮЩИМИ МОМЕНТАМИ

Дата добавления: 2018-04-15 ; просмотров: 283 ; Мы поможем в написании вашей работы!

Источник

Анодная (вольт — амперная) характеристика диода

Эта характеристика представляет собой зависимость

где Uн – напряжение накала, которое обеспечивает постоянство температуры катода и, следовательно, постоянство тока эмиссии. При UА=0 анодный ток практически отсутствует и только некоторые электроны, имеющие достаточно большую энергию, могут развить скорость, необходимую для преодоления тормозящего поля пространственного заряда, и достичь анода. При подаче положительного анодного напряжения для электронов создаётся ускоряющее поле, которое позволяет им преодолеть тормозящее поле пространственного заряда и достигнуть анода. По мере возрастания анодного напряжения UА происходит постепенное рассасывание пространственного заряда, и анодный ток IА увеличивается. При каком-то значении +Uа пространственный заряд полностью рассасывается. Режим, при котором полностью рассасывается пространственный заряд электронов в диоде, называется режимом насыщения. В этом режиме все электроны, вылетевшие с катода, достигают анода. В режиме насыщения ток эмиссии

Читайте также:  Переменный электрический ток активное сопротивление электрическая схема

IА = IА нас. Таким образом, при работе диода наблюдается два режима: режим пространственного заряда и режим насыщения.

режим простр. режим UА

Основным режимом является режим пространственного заряда, т.к. в этом режиме проявляется управляющее действие поля анода, и анодный ток IА меняется пропорционально напряжению UА. Эта пропорциональность нарушается в режиме насыщения, где изменение UА не вызывает соответствующего изменения IА.

В действительности, и в режиме насыщения также происходит некоторое увеличение тока IА при увеличении UА. Оно особенно резко выражено у ламп с оксидными катодами, что связано с увеличением тока эмиссии под действием поля анода.


Статические параметры диода

Крутизна характеристики отражает управляющее воздействие изменения UА на изменение IА в режиме пространственного заряда:

S=ΔIА/ ΔUА , мА/В при Uн = const.

Крутизна характеристики в различных её точках разная, т.к. сама характеристика нелинейная. Очевидно, чем ближе к катоду расположен анод, тем управляющее воздействие поля анода на пространственный заряд больше и S соответственно больше. Ламповые диоды имеют S=2…6 мА/В.

Внутреннее сопротивление характеризует сопротивление диода изменяющемуся току, т.е. переменному току:

Внутреннее сопротивление диода Ri составляет 50…1000 Ом.

Источник