Меню

Каждый ток учитывается столько раз сколько раз он охватывается контуром

Теорема о циркуляции вектора В

.Циркуляцией вектора В по заданному замкнутому контуру называется интеграл

где dl — вектор элементарной длины контура, направленной вдоль обхода контура, Bl=Bcosa — составляющая вектора В в направлении касательной к контуру (с учетом выбранного направления обхода), a — угол между векторами В и dl.

Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В):

циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной m на алгебраическую сумму токов, охватываемых этим контуром:

где n — число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого образует с направлением обхода по контуру правовинтовую систему; ток противоположного направления считается отрицательным. Например, для системы токов, изображенных на рис. 173,

Выражение (118.1) справедливо только для поля в вакууме, поскольку, как будет показано ниже, для поля в веществе необходимо учитывать молекулярные токи.

В каждой точке этого контура вектор В одинаков по модулю и направлен по касатель­ной к окружности (она является и линией магнитной индукции). Следовательно, циркуляция вектораВ равна

Согласно выражению (118.1), получим В×2pr=mI(в вакууме), откуда

Таким образом, исходя из теоремы о циркуляции вектора В получили выражение для магнитной индукции поля прямого тока, выведенное выше (см. (110.5)).

Сравнивая выражения (83.3) и (118.1) для циркуляции векторов Е и В, видим, что между ними существует принципиальное различие. Циркуляция вектора Еэлектростати­ческого поля всегда равна нулю, т. е. электростатическое поле является потенциальным. Циркуляция вектора В магнитного поля не равна нулю. Такое поле называется вихревым.

Теорема о циркуляции вектора В имеет в учении о магнитном поле такое же значение, как теорема Гаусса в электростатике, так как позволяет находить магнитную индукцию поля без применения закона Био — Савара — Лапласа.

3.6.Применение теоремы о циркуляции вектора Вдля расчета:

a. Индукции магнитного поля прямого тока

b. Индукции магнитного поля соленоида

Если отрезок проходит внутри соленоида на любом расстоянии от его оси, контур охватывает суммарный ток nli, где n – число витков соленоида, i – сила тока в соленоиде. Поэтому согласно

– магнитная постоянная)

В гауссовой системе эта формула имеет вид

Если отрезок располагается вне соленоида, то охватываемый контуром ток равен нулю, вследствие чего

3.7.Сила, действующая на контур с током в однородном и неоднородном магнитном поле.

Источник

Закон полного тока для магнитного поля

В электрических цепях всегда присутствует магнитное поле, которое оказывает электромагнитное взаимодействие с токами этих цепей. Данный фактор учитывается при расчетах цепей, а закон полного тока для магнитного поля является инструментом для подобных вычислений.

Если поднести магнитную стрелку к проводнику, по которому течёт ток, её положение изменится. Это говорит о наличии вокруг проводника кроме электрического ещё и магнитного поля. В результате многочисленных исследований электромагнитных явлений установлено, что существует взаимное влияние полей, имеющих электрическую и магнитную природу.

Физический смысл закона

Рассмотрим упрощённый вариант влияния магнитной индукции на электрическое поле. Для этого представим себе два параллельных проводника, по которым циркулируют постоянные токи, например, I1 и I2. Вблизи этих проводников образуется поле, которое мысленно можно ограничить неким контуром L – воображаемой замкнутой фигурой, плоскость которой пересекает потоки движущихся зарядов.

В пределах плоскости, охватываемой контуром L, формируется магнитное поле, напряжённость которого распределена в соответствии с направлениями токов. При этом циркуляция вектора магнитного поля в плоскости замкнутого контура прямо пропорциональна сумме токов, пронзающих данный контур. Полный электрический ток равен векторной сумме его составляющих:

Читайте также:  Тест по переменному току электротехника с ответами

Направления векторов I1 и I2 определяется по правилу буравчика.

Приведённые выше рассуждения можно рассматривать в качестве примера изображающего упрощённую модель частного случая рассматриваемого закона. В действительности же, процессы взаимного влияния магнитных и электрических полей намного сложнее, и они описываются интегральными и дифференциальными уравнениями Максвелла.

Упрощенный подход

Выразить закон в дифференциальном представлении довольно сложно. Потребуется вводить дополнительные компоненты. Необходимо учитывать влияние молекулярных токов. Наличие вихревых токов является причиной образования магнитного вихревого поля в пределах контура.

Вектор электрического смещения сравним с вектором напряжённости присутствующего магнитного поля H. При этом Ориентация вектора смещения зависит от быстроты изменения магнитной индукции.

Для упрощения вычислений на практике часто пользуются формулами закона для магнитного поля полных токов, представленных в виде суммирования предельно малых участков контура, с учётом влияния вихревых полей. При реализации этого метода контур мысленно разбивают на бесконечно малые отрезки. На этих отрезках проводники считаются прямолинейными, а магнитное поле на таких участках контура считают однородным.

На одном дискретном участке вектор напряженности Um определяется по формуле: Um= HL×ΔL, где HL– циркуляция вектора напряжённости на участке ΔL контура L. Тогда суммарная напряжённость UL вдоль всего контура вычисляется по формуле: UL= Σ HL× ΔL.

Закон в интегральном представлении

Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).

Поле бесконечно прямого тока

Рис. 1. Поле бесконечно прямого тока

Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ 2π.

Из теоремы Остроградского-Гаусса вытекает формула:

Формула из теоремы Остроградского-Гаусса

Учитывая, что cos φ = 1,

Формула магнитной индукции

Формула итог

Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μI, где μ = 1/c 2 ε – магнитная постоянная.

Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда

Сумма токов

Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.

Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.

Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.

Если ток распределён в пространстве (произвольный ток), тогда

Ток в пространстве

где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:

Формула полного тока в вакауумеИллюстрация закона для вакуума Рис. 2. Иллюстрация закона для вакуума

  1. Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
  2. Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
  3. Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.

Влияние среды

На результат взаимодействия магнитных потоков и постоянных токов влияет среда. Вещества обладают магнитной проницаемостью в потоке вектора индукции, что вносит коррективы на взаимодействие магнитной среды с токами проводимости. В однородной изотопной среде, где значение вектора электромагнитной индукции одинаково во всех точках, векторы B и H связаны между собой следующим соотношением:

Связь векторов b и h

где H — напряжённость магнитного поля, символом μ обозначена магнитная проницаемость.

Носители электрических зарядов создают собственные микротоки. Циркуляция вектора, характеризующего электростатическое поле, всегда нулевая. Поэтому электростатические поля, в отличие от магнитных, являются потенциальными.

Читайте также:  Чем можно измерить эдс источника тока

Вектор B отображает результирующее значение полей макро- и микротоков. Линии электростатической индукции всегда остаются замкнутыми, в том числе и на положительных зарядах.

Закон полного тока в веществе

Рис. 3. Закон полного тока в веществе

Для полей, которые действуют в среде, состоящей из разных веществ, необходимо учитывать микротоки, характерные именно для конкретных структур, образующих данную среду.

Утверждение, изложенное выше, верно для полей соленоидов или любой другой структуры, обладающей свойствами конечной магнитной проницаемости.

Торойд

В электротехнике часто приходится иметь дело с катушками разных видов и размеров. Катушка, образованная витками намотанными на сердечник тороидальной формы (в виде бублика), называется тороидом. Важными характеристиками сердечника тора являются его радиусы — внутренний (R1) и внешний (R2).

Поле внутри соленоида на расстоянии r от центра равно:

Формулы: Поле внутри соленойда

Выводы

На основании изложенного, приходим к заключению:

  1. Закон полного тока устанавливает зависимость между напряжённостью магнитного поля и перемещением в этом поле электрических зарядов.
  2. Действие закона распространяется на все среды, при допустимых плотностях тока.
  3. Закон также выполняется в полях постоянных магнитов.

При вычислениях не имеет значения, какую формулу мы используем – суть закона остаётся неизменной: он выражает взаимодействия, которые происходят между токами и создаваемыми ими магнитными полями, пронизывающими замкнутый контур.

Выводы закона учитываются при конструировании электромагнитных устройств. Наличие завихрений в электромагнитных полях приводит к снижению КПД. Кроме того, вихревые поля негативно влияют на работоспособность электронных элементов, расположенных в зоне их действий.

Конструкторы электротехнических приборов стремятся свести к минимуму таких влияний. Например, вместо обычных соленоидов применяют тороидальные катушки, за пределами которых отсутствуют электромагнитные поля.

Источник



Закон полного тока для магнитного поля в вакууме

(теорема о циркуляции вектора В)


В разделе “Электростатика” было доказано, что циркуляция вектора напряженности электростатического поля вдоль замкнутого контура равна нулю, откуда следует потенциальный характер электростатического поля. Одним из основных отличий магнитного поля от электростатического поля является его непотенциальность. Для доказательства этого рассмотрим линейный интеграл от В по замкнутому пути в магнитном поле, создаваемом током, т.е.

где – вектор элемента длины контура, направленный вдоль обхода контура; В – проекция вектора на направление касательной к контуру. Данный интеграл называется циркуляцией вектора по заданному замкнутому контуру .

Рассмотрим частный случай: круговой путь является силовой линией радиуса R магнитного поля прямолинейного бесконечного проводника с током (рис.2.7).


Магнитная индукция для этого случая была подсчитана ранее, и во всех точках окружности вектор составляет:

Угол между векторами и равен нулю, поэтому cos( , )=1. Из полученного результата следует, что циркуляция вектора магнитной индукции вдоль силовой линии прямолинейного проводника с током не равна нулю, т.е. поле такого проводника непотенциально. Оно называется вихревым. Полученная формула справедлива для любой формы замкнутого контура, охватывающего проводник с током.

Пусть теперь наш контур произвольной формы охватывает n проводников с токами I1, …In. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. При этом положительным считается ток, если он с направлением обхода контура образует правовинтовую систему. Ток противоположного направления считается отрицательным.

Рисунок 2.8 — Определение полного тока
I2
I1
I3
I4

Разберем пример, изображенный на рис.2.8. Найдем сумму токов, т.е. полный ток, охватываемый контуром :


Ток I3 не учитывается, т.к. он не охватывается контуром. В результате имеем


Таким образом, циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром:

Данное выражение представляет собой закон полного тока для магнитного поля в вакууме, или теорему о циркуляции вектора В.

Читайте также:  Схема регулятора напряжения генератора постоянного тока

Все вышерассмотренное относится к вакууму. Можно доказать, что циркуляция вектора вдоль замкнутого контура, не охватывающего проводник с током, равна нулю.

Рассмотренная нами теорема имеет в магнитостатике такое же значение, как теорема Гаусса в электростатике. Она позволяет находить магнитную индукцию различных полей без применения закона Био-Савара-Лапласа.

Источник

Закон полного тока. Потенциальные и соленоидные векторные поля

Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В):

циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной m на алгебраическую сумму токов, охватываемых этим кон­туром: (118.1)

где n — число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого образует с направлением обхода по контуру правовинтовую систему; ток противоположного направления считается отрицательным. Например, для системы токов, изображенных на рис. 173,

Выражение (118.1) справедливо только для поля в вакууме, поскольку, как будет показано ниже, для поля в веществе необходимо учитывать молекулярные токи.

Векторное поле а, поток к-го через любую кусочно-гладкую поверхность, лежащую в области G и являющуюся границей некоторой ограниченной области, равен нулю, называется соленоидальным в G.

Магнитное поле прямого тока, бесконечного соленоида, тороида.

Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (110.4)

Так как угол a для всех элементов прямого тока изменяется в пределах от 0 до p, то, согласно (110.3) и (110.4),

Следовательно, магнитная индукция поля прямого тока

выражению для магнитной индукции поля внутри соленоида(в вакууме): (119.2)

Получили, что поле внутри соленоида однородно

Важное значение для практики имеет также магнитное поле торонда — кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симмет­рии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r. Тогда, по теореме о циркуляции (118.1), 2pr=mNI, откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N — число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и 2pr=0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

37.Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля B.

Циркуляция вектора В магнитного поля не равна нулю. Такое поле называется вихревым.

дивергенция — это дифференциальный оператор на векторном поле, характеризующий поток данного поля через поверхность малой окрестности каждой внутренней точки области определения поля.

Это же выражение можно записать с использованием оператора набла

С точки зрения физики, дивергенция векторного поля является показателем того, в какой степени данная точка пространства является источником или стоком этого поля:

— точка поля является источником;(в-во поступает в объем)

— точка поля является стоком;(удаляется из него)

— стоков и источников нет, либо они компенсируют друг друга.

Ротор векторного поля — вектор, проекция которого на каждое направление равна пределу отношения циркуляции векторного поля по контуру L плоской площадки ΔS, перпендикулярной к этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку: .

(а-циркуляция вектора по контуру а)

Ротор-векторная характеристика вращательной составляющей веторного поля(=вихрь)

где i, j и k — единичные орты для осей x, y и z соответственно.

Источник

Adblock
detector