Какие существуют способы пуска асинхронного двигателя при пониженном напряжении
Пуск асинхронных двигателей можно производить при полном напряжении (прямой пуск) и при пониженном напряжении.
Прямой пуск осуществляется при помощи рубильников, переключателей, магнитных пускателей и других пусковых аппаратов.
При прямом пуске к двигателю подается полное напряжение сети. Недостатком этого способа пуска являются большие пусковые токи, которые в 2-7 раз больше номинальных токов двигателей.
Наиболее простым является прямой пуск асинхронных двигателей с короткозамкнутым ротором. Пуск и остановка таких двигателей производятся включением или отключением рубильника (магнитного пускателя) и т. п. На рис. 261 показана схема прямого пуска асинхронного короткозамкнутого двигателя.
Рис. 261. Прямой пуск асинхронного двигателя с короткозамкнутым ротором
Для уменьшения пусковых токов асинхронных двигателей с короткозамкнутым ротором уменьшают напряжение, подводимое к обмоткам статора двигателя.
Рассмотрим подробнее способ пуска асинхронных двигателей при пониженном напряжении с помощью переключателя со звезды на треугольник.
На рис. 262 дана принципиальная схема включения обмотки статора с переключателем со звезды на треугольник. При пуске обмотка статора с помощью рубильника соединяется звездой и, как только двигатель разовьет максимальную возможную скорость вращения, переключатель откидывается влево, обмотка статора оказывается включенной треугольником. При этом способе пуска двигателя пусковой ток уменьшается в три раза. Поясним это на примере.
Рис. 262. Переключение обмотки статора со звезды на треугольник при пуске двигателя
На рис. 263, а схематически изображена обмотка статора, соединенная при пуске звездой. Пусть напряжение между линейными проводами двигателя равно 380 в, а следовательно, напряжение, приходящееся на фазу двигателя при пуске:
Рис. 263. Включение обмотки статора двигателя: а — звездой, б — треугольником
Если полное сопротивление фазной обмотки двигателя равно 10 ом, то ток фазы
При соединении звездой IлΥ = IфΥ. Поэтому ток, потребляемый двигателем из сети будет также равен 22 а.
На рис. 263, б схематически показан тот же двигатель, если обмотка его соединена треугольником и включена на линейное напряжение 380 в. В том случае UлΔ = UфΔ, а поэтому ток фазы двигателя при пуске
Так как при соединении треугольником
то двигатель в этом случае будет потреблять из сети линейный ток
Как видно из приведенного примера, при пуске линейный ток двигателя при соединении обмоток статора звездой в три раза меньше линейного тока двигателя, статорная обмотка которого соединена треугольником.
По этому способу пуска двигателю в начальный момент подается напряжение в √3 раз меньше номинального.
Так как момент вращения асинхронного двигателя пропорционален квадрату подводимого напряжения (М ≡ U 2 1), то уменьшение напряжения в √3 раз вызовет уменьшение пускового момента в 3 раза.
Поэтому этот способ пуска можно применять только в тех случаях, когда двигатели пускают вхолостую или слабо нагруженными.
Само собой разумеется, что переключение обмотки статора со звезды на треугольник при пуске можно применять только для двигателей, нормально работающих по схеме треугольника.
Уменьшить напряжение, подводимое к двигателю, а вместе с этим уменьшить пусковой ток двигателя можно также при помощи автотрансформатора.
Пуск асинхронных двигателей с фазным ротором производится при помощи пускового реостата, подключаемого к обмотке ротора через кольца и щетки. Перед пуском двигателя нужно убедиться в том, что сопротивление пускового реостата полностью введено. В конце пуска реостат плавно выводится и закорачивается. Наличие активного сопротивления в цепи ротора при пуске приводит к уменьшению пускового тока и увеличению пускового момента. На рис. 264 дана схема пуска асинхронного двигателя с фазным ротором.
Рис. 264. Схема пуска асинхронного двигателя с фазным ротором
Источник
Пуск при пониженном напряжении
Пуск под номинальным напряжением (прямой пуск)
Прямой пуск асинхронных двигателей простой и нет необходимости в дополнительной аппаратуре.
а) большие пусковые токи, что снижает напряжение в сети, а
б) большие ударные электромагнитные моменты
в) большие динамические усилия возникают в обмотках статора.
Поэтому асинхронные двигатели большой мощности пускаются при пониженном напряжении.
а) реакторный способ пуска, рис. 129.
При пуске для ограничения пускового тока в фазы двигателя включается сопротивление реактора, т.е.
,
часть напряжения падает на реакторе, а на двигатель подается пониженное напряжение. После разгона асинхронного двигателя ток в статоре уменьшится, уменьшится падение напряжения на реакторе. Напряжение на двигателе возрастет. Затем замыкают контакторы К и двигатель подключается на полное напряжение.
— коэффициент допустимой кратности,
,
.
т.е. если уменьшить ток в 2 раза (К пс), момент уменьшиться в 4 раза. Это является недостатком реакторного способа пуска.
б) автотрансформаторный способ пуска, рис. 130.
, ,
где К А – коэффициент трансформации автотрансформатора.
Отсюда мы видим, что если пусковой ток уменьшается в раз, то и момент пусковой во столько же раз, т.е. больше чем при реакторном пуске.
Порядок пуска: замыкается контактор К 1, подается напряжение на автотрансформатор, двигатель при этом пускается при пониженном напряжении. После разгона размыкается контактор К 1, и автотрансформатор работает как реактор, затем замыкается контактор К 2 и на двигатель подается полное напряжение.
в) пуск посредством переключения обмотки статора со звезды на треугольник, рис. 131.
При пуске обмотка статора соединена в звезду, фазное напряжение меньше линейного на , поэтому пусковой ток уменьшится. После разгона двигателя обмотку статора переключают в треугольник. При соединении обмотки статора в звезду пусковой ток и пусковой момент уменьшаются в 3 раза по сравнению с пуском при соединении обмотки статора в треугольник.
,
,
,
,
необходимо учитывать, что при пуске момент уменьшается в 3 раза.
3-4-4-3. Пуск двигателя с фазным ротором
Пуск этого двигателя происходит при полном напряжении. Но за счёт введения активного сопротивления в роторную цепь увеличиваем пусковой момент и уменьшаем пусковой ток, рис. 132.
Пуск производится в несколько ступеней. Это делается для того, чтобы уменьшить время пуска.
Источник
2.11.2. Пуск при пониженном напряжении
Этот способ применяют при пуске в ход мощных двигателей, для которых недопустимо прямое включение в сеть. Для понижения подводимого к обмотке статора напряжения используют дроссели и понижающие автотрансформаторы. После пуска в ход на обмотку статора подается напряжение сети.
Понижение напряжения производят с целью уменьшения пускового тока, но одновременно происходит уменьшение пускового момента. Если напряжение при пуске понизить в раз, пусковой момент понизится в 3 раза. Поэтому этот способ пуска можно применять только при отсутствии нагрузки на валу, т.е. в режиме холостого хода.
Если, согласно паспортным данным, двигатель должен включаться в сеть по схеме треугольник, то для снижения пускового тока на время пуска в ход обмотку статора включают по схеме звезда.
Основные недостатки этого способа пуска: высокая стоимость пусковой аппаратуры и невозможность пуска с нагрузкой на валу.
2.11.3. Реостатный пуск асинхронных двигателей
Этот способ применяют при тяжелых условия пуска, т.е. при большой нагрузке на валу. Для реостатного пуска используют асинхронные двигатели с фазным ротором, в цепь ротора включается пусковой реостат. Реостатный пуск служит для увеличения пускового момента. Одновременно происходит уменьшение пускового тока двигателя. По мере разгона двигателя пусковой реостат выводится и после окончания пуска обмотка ротора оказывается замкнутой накоротко.
На рис. 2.19 приведена схема реостатного пуска (рис. 2.19.а) и механические характеристики (рис 2.19.б) при этом пуске.
В момент пуска в ход (рис. 2.19.а) в цепь ротора введен полностью пусковой реостат (Rпуск3=Rпуск1+Rпуск2), для чего контакты реле К1 и К2 разомкнуты. При этом двигатель будет запускаться по характеристике 3 (рис. 2.19.б) под действием пускового момента Mпуск. При заданной нагрузке на валу и введенном реостате Rпуск3 разгон закончится в точке A. Для дальнейшего разгона двигателя нужно замкнуть контакты К1, при этом сопротивление пускового реостата снизится до Rпуск2 и разгон будет продолжаться по характеристике 2 до точки B. При замыкании контактов К2, пусковой реостат будет полностью выведен (Rпуск=0) и окончательный разгон двигателя будет продолжаться по его естественной механической характеристике 1 и закончится в точке C.
Критическое скольжение равно:
для естественной характеристики Sкр1≈R2/X2;
Пусковой момент для искусственной характеристики можно рассчитать по формуле Клосса
Задаваясь необходимой величиной пускового момента, можно вычислить Sкр3 и величину пускового сопротивления
2.11.4. Использование двигателей с улучшенными пусковыми свойствами
Стремление совместить достоинства асинхронных двигателей с короткозамкнутым ротором (высокая надежность) и фазным ротором (большой пусковой момент) привело к созданию этих двигателей. Они имеют короткозамкнутую обмотку ротора специальной конструкцией. Различают двигатели с обмоткой ротора в виде двойной «беличьей клетки» (рис. 2.20.а) и с глубоким пазом (рис. 2.20.б).
На рис. 2.20 показаны конструкции ротора двигателей с улучшенными пусковыми свойствами.
У двигателя с двойной «беличьей клеткой» на роторе закладывается две короткозамкнутые обмотки. Обмотка 1 выполняет роль пусковой, а обмотка 2 является рабочей. Для получения повышенного пускового момента пусковая обмотка должна обладать большим активным сопротивлением, чем рабочая обмотка. Поэтому обмотка 1 выполняется из материала с повышенным удельным сопротивлением (латунь), чем обмотка 2 (медь). Сечение проводников, образующих пусковую обмотку, меньше, чем у рабочей обмотки. За счет этого повышается активное сопротивление пусковой обмотки.
Рабочая обмотка, расположенная глубже, охватывается большим магнитным потоком, чем пусковая. Поэтому индуктивное сопротивление рабочей обмотки значительно больше, чем пусковой. За счет этого в момент пуска в ход, когда частота тока ротора имеет наибольшее значение, ток в рабочей обмотке, как следует из закона Ома, будет небольшим и в создании пускового момента будет участвовать в основном пусковая обмотка, имеющая большое активное сопротивление. По мере разгона двигателя частота тока ротора падает, уменьшается и индуктивное сопротивление обмоток ротора, это приводит к увеличению тока в рабочей обмотке, за счет этого в создании вращающего момента будет участвовать, в основном, рабочая обмотка. Т.к. она обладает малым активным сопротивлением, естественная механическая характеристика двигателя будет жесткой.
Аналогичная картина наблюдается у двигателя с глубоким пазом (рис. 2.20.б). Глубокий стержень обмотки (1) можно представить в виде нескольких проводников, расположенных по высоте паза. За счет высокой частоты тока в обмотке ротора в момент пуска в ход происходит «вытеснение тока к поверхности проводника». За счет этого в создании пускового момента участвует только верхний слой проводников обмотки ротора. Сечение верхнего слоя значительно меньше сечения всего проводника. Поэтому при пуске в ход обмотка ротора обладает повышенным активным сопротивлением, двигатель развивает повышенный пусковой момент. По мере разгона двигателя плотность тока по сечению проводников обмотки ротора выравнивается, сопротивление обмотки ротора снижается.
В целом эти двигатели имеют жесткие механические характеристики, повышенный пусковой момент и меньшую кратность пускового тока, чем двигатели с короткозамкнутым ротором обычной конструкцией.
Источник