Меню

Как уменьшить мощность центробежного насоса



Как уменьшить производительность скважинного насоса (чтобы он не превышал дебит скважины)

Мы уже неоднократно писали, что расход скважинного насоса должен минимум на 10-15% быть меньше дебита скважины (например, см. статью «Скважинные насосы – большая глубина не проблема» или «Как подобрать скважинный насос»). Последствий несоблюдения этого условия может быть несколько:

– насос выкачает из скважины всю воду и, если не предусмотрена его защита от сухого хода (работа всухую, без воды), то просто серьезно выйдет из строя (расплавятся подшипники);

– постоянное осушение скважины насосом быстро приведет к ее заиливанию.

Но зачастую дебит песчаной скважины меньше расхода насоса. Например, меньше 1м 3 /ч, а минимальный расход того же скважинного насоса Grundfos – 1.7 м 3 /ч (Grundfos SQ первой серии). В насосах Водомет есть модели с минимальным расходом 0,45-0,6 м 3 /ч. Но, во-первых, многие не хотят покупать такие насосы, предпочитая более надежные и технически совершенные зарубежные марки. Во-вторых, насосов Водомет в трехдюймовом исполнении вообще не существует. Кроме того, возможна ситуация, когда насос достается по случаю, а не подбирается под конкретные характеристики скважины. Как в таком случае поступать?

Выход один – искусственно уменьшить расход скважины. Как это сделать? На специализированных форумах по водоснабжению этот вопрос многократно обсуждался, что говорит об актуальности проблемы. Давались разные советы, но всех их можно свести к следующим вариантам:

1. Уменьшить мощность, а значит и расход насоса путем уменьшения напряжения, подводимого к нему (например, при помощи ЛАТР).

2. Уменьшить расход при помощи понижения частоты вращения вала двигателя (частотное регулирование).

3. Увеличить гидравлическое сопротивление в системе, например, поставив вентиль или кран.

4. Часть воды туже вновь сбрасывать в скважину.

Рассмотрим подробнее, каждый из этих вариантов.

1. Уменьшение напряжения, подводимого к насосу. Крайне нежелательный вариант. Производитель в паспорте к насосу всегда указывает, что допустимые колебания напряжения составляют ± 10%, а то и ±5%. Все системы управления насосов имеют защиту от просадок напряжения.

2. Уменьшение частоты вращения вала двигателя. Сейчас только насосы Grundfos серии SQE позволяют частотное регулирование в пределах 65-100% диапазона расхода и напора. Заметим, что эти насосы имеют высокую стоимость, даже по сравнению с отнюдь не дешевыми насосами Grundfos серии SQ (отличие именно в возможности частотного регулирования).

Читайте также:  Компенсация реактивной мощности электрических сетях

3. Увеличение гидравлического сопротивления. В принципе, такой вариант возможен. Но не желателен. Что значит увеличенное гидравлическое сопротивление? Ведь согласно закону сохранения энергии, чем выше статическое давление (которое как раз и растет при увеличении гидравлического сопротивления), тем ниже скорость жидкости. Но не забываем, что скважинные насосы охлаждаются водой, которую перекачивают. И уменьшение скорости водяного потока означает ухудшения отвода тепла, что ведет к перегреву насоса. Минимальная скорость водяного потока должна быть не менее 0,5м/с.

Перепускание части воды обратно в скважину. Против этого варианта у нас никаких возражений нет за исключением того, что часть энергии расходуется зря (кстати, в предыдущем варианте тоже, так как насосу приходится преодолевать повышенное гидравлическое сопротивление). Конструктивно это реализуется следующим образом. В трубу до мембранного гидроаккумулятора врезается труба с краном, второй конец которой опускается в скважину. Регулируя проходное сечение крана, можно легко добиться необходимого фактического расхода насоса. Учитывая, что малодебитные песчаные скважины в основном используются для летних домиков, такой вариант вполне приемлем, так как суммарный перерасход электроэнергии будет не слишком велик.

Источник

Регулирование подачи насоса.

Основной задачей регулирования подачи насоса является подача в сеть расхода Q(м 3 /ч), заданного определенным графиком. При этом характеристики насоса, такие как Н(напор), p(давление), N(мощность) и η(коэффициент полезного действия) имеют тенденцию изменяться.

Однако сеть трубопроводов и потребители накладывают на некоторые из параметров определенные условия. Например насосы должны создавать определенные потребителем расход и давление, отвечающее гидравлическим свойствам системы трубопроводов.

Компрессоры в некоторых случаях работают на сеть с переменным Q, но должны обеспечить постоянное давление р (например, пневматический инструмент) в других случаях они работают с постоянным Q при переменном р.

Таким образом возможны различные варианты регулирования подачи. Самые актуальные способы регулирования подачи насоса рассмотрены в этой статье.

Дроссельное регулирование при постоянной частоте оборотов.

Предположим, что насос подключен так, как показано на схеме.

Отложим на графике характеристики напора, мощности и КПД центробежного насоса при постоянном числе оборотов.

На этом же графике изобразим характеристику трубопроводной сети, на которую работает насос. При этом считается, что регулирующий дроссель открыт полностью.

Читайте также:  Какую мощность потребляет видеокарты

Установившийся режим работы центробежного агрегата возможен только если напор насоса равен напору, расходуемому в системе. Это равенство наблюдается в точке а.

В случае прикрытия дросселя на напорной трубе точка а передвинется по характеристике влево и займет положение а / , задав новые значения параметров Q / , H / , N / . Дальнейшее перекрывание дросселя вызывает смещение характеристики трубопроводной системы ещё больше вверх, и точка а передвигается в точку а // , дающую значения параметров Q // , H // , N // и т.д.

Следовательно, дроссельное регулирование при постоянной частоте вращения достигается введением дополнительного гидравлического сопротивления в сеть трубопроводов машины.

Поскольку наибольшая подача достигается при полностью открытом дросселе (точка а), дроссельное регулирование применяют только с целью уменьшения подачи. Энергетическая эффективность такого регулирования низка, но благодаря своей простоте этот способ широко применяется.

При дроссельном регулировании центробежных машин, подающих жидкость, дроссель располагают на напорной трубе. Если расположить его на всасывающей трубе, то при глубоком регулировании может возникать кавитация.

Изменение частоты вращения вала

В тех случаях, когда имеется возможность изменять частоту вращения вала двигателя, приводящего в движение центробежную машину, целесообразно воспользоваться этим вариантом.

Насос подключен к трубопроводу так же, как и в предыдущей схеме и работает при частотах вращения n1, n2, n3, причем n1

По графику видно, что при изменении частоты вращения могут быть достигнуты различные подачи и напоры, причем с изменением частоты вращения – изменяются подача и напор. В отличие от предыдущего способа, этот способ дает возможность регулировать подачу в любом направлении.

Современные насосы, например насосы для отопления , уже оборудуются многоскоростными электродвигателями, позволяющими переключать насос с одной скорости на другую. Если же оборудовать центробежный агрегат инвертером — преобразователями частоты, то появится возможность плавно изменять частоту вращения, устанавливая любую подачу

Прочитайте полную статью по ссылке ниже

Источник

Регулирование подачи Центробежного Насоса

Существует три способа регулирования производительности насоса:

Регулирование подачи насоса дросселированием

Дросселирование — самый простой и самый неэффективный способ регулирования подачи центробежного насоса. Чтобы дросселировать поток, увеличивают гидравлическое сопротивление на общем для всей системы напорном участке трубопровода, например, сразу за насосом.

Для дросселирования потока можно применить автоматическую или ручную регулирующую арматуру, либо установить дроссельную шайбу.

Читайте также:  Тендер схема выдачи мощности

Во время дросселирования подачи насоса, рабочая точка перемещается по напорно-расходной характеристике вверх, при этом увеличивается напор, а подача и КПД уменьшаются.

Регулирование подачи насоса перепуском

Перепуск — для регулирования производительности насоса на перемычке между его входным и выходным патрубком устанавливают регулятор поддерживающий постоянный перепад давлений на насосе (постоянный напор насоса). При уменьшении подачи насоса возрастает создаваемый им напор — регулятор реагирует на отклонение перепада от заданной отметки и открывается перепуская воду из напорного патрубка во всасывающий. Таким образом, подача насоса остаётся неизменной, а расход воды в сети может колебаться в широких пределах.

Преимуществом данного метода регулирования является то, что насос всегда работает с постоянной подачей и напором в зоне оптимального КПД, а недостатком, является то, что со снижением нагрузки в сети потребление электроэнергии остаётся прежним.

Регулирование подачи насоса перепуском применяют в системах отопления с автоматическими регулирующими клапанами, изменяющими расход в зависимости от потребности здания в тепле, а также для включения насосов, которые не допускают сильных колебаний подачи, в системы с динамическим гидравлическим режимом.

Частотное регулирование подачи насоса

Частотное управление — установка регулятора частоты вращения рабочего колеса, является наиболее эффективным и наиболее дорогим методом управления подачей насоса, так как стоимость регулятора частоты соизмерима со стоимостью насоса.

Физика данного метода проста: снизив в двое частоту вращения рабочего колеса насоса, в два раза уменьшается его подача, в четыре раза уменьшается напор и в восемь раз уменьшается потребление электроэнергии.

Современные регуляторы частоты вращения могут поддерживать постоянную подачу, или напор насоса, а могу изменять их в зависимости от потребности системы в разное время суток или дни недели.

Программное изменение частоты вращения рабочего колеса, не только обеспечит работу насоса с максимальным КПД, но и позволит снизить шумы возникающие во время работы, осуществлять мягкий пуск, снижать пусковые токи и исключить гидравлические удары.

Регулирование подачи центробежного насоса изменением частоты вращения двигателя целесообразно в системах с частыми и сильными колебаниями расхода воды, а также в случае высокой стоимости электроэнергии. В таких системах затраты на регулятор частоты вращения могут окупиться за несколько месяцев.

Источник