Меню

Как измерить напряжение дуги



Электрическая дуга и ее характеристики

Электрическая дуга и ее характеристики

Электрическая дуга — прохождение электричества через газ между двумя электродами, один из которых является источником электронов (катодом). Электрод — проводник, которым заканчивается какой-либо участок электрической цепи.

Электроны, испускаемые катодом в большом количестве, вызывают сильную ионизацию газа между электродами и тем самым делают возможным прохождение тока большой силы между электродами.

Характерной особенностью электрической дуги в отличие от обычного газового разряда является то, что она может гореть при небольших напряжениях.

Электрическая дуга была открыта петербургским физиком В. В. Петровым в 1802 г. и получила важное применение в технике.

Электрическая дуга представляет собой вид разряда, характеризующийся большой плотностью тока, высокой температурой, повышенным давлением газа и малым падением напряжения на дуговом промежутке. При этом имеет место интенсивное нагревание электродов (контактов), на которых образуются так называемые катодные и анодные пятна. Катодное свечение концентрируется в небольшом ярком пятне, раскаленная часть противоположного электрода образует анодное пятно.

В дуге можно отметить три области, весьма различные по характеру протекающих в них процессов. Непосредственно к отрицательному электроду (катоду) дуги прилегает область катодного падения напряжения. Далее идет плазменный ствол дуги. Непосредственно к положительному электроду (аноду) прилегает область анодного падения напряжения. Эти области схематично показаны на рис. 1.

Строение электрической дуги

Рис. 1. Строение электрической дуги

Размеры областей катодного и анодного падения напряжении на рисунке сильно преувеличены. В действительности их протяженность очень мала Например, протяженность катодного падения напряжения имеет величину порядка пути свободного движения электрона (меньше 1 мк). Протяженность области анодного падения напряжения обычно несколько больше этой величины.

В обычных условиях воздух является хорошим изолятором. Так, необходимое для пробоя воздушного промежутка в 1 см напряжение составляет 30 кВ. Чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц (электронов и ионов).

Как возникает электрическая дуга

Электрическая дуга, представляющая собой поток заряженных частиц, в начальный момент расхождения контактов возникает в результате наличия свободных электронов газа дугового промежутка и электронов, излучаемых с поверхности катода. Свободные электроны, находящиеся в промежутке между контактами перемещаются с большой скоростью по направлению от катода к аноду под действием сил электрического поля.

Напряженность поля в начале расхождения контактов может достигать нескольких тысяч киловольт на сантиметр. Под действием сил этого поля вырываются электроны с поверхности катода и перемещаются к аноду выбивая из него электроны, которые образуют электронное облако. Созданный таким путем первоначальный поток электронов образует в дальнейшем интенсивную ионизацию дугового промежутка.

Наряду с ионизационными процессами, в дуге параллельно и непрерывно идут процессы деионизации. Процессы деионизации состоят а том, что при сближении двух ионов разных знаков или положительного иона и электрона они притягиваются и, сталкиваясь, нейтрализуются, кроме того, наряженные частицы перемещаются из области горения душ с большей концентрацией зарядов в окружающую среду с меньшей концентрацией зарядов. Все эта факторы приводят к понижению температуры дуги, к ее охлаждению и погасанию.

Читайте также:  При зарядке конденсатора до напряжения u он получает заряд q как изменилась емкость конденсатора

Электрическая дуга

Рис. 2. Электрическая дуга

Дуга после зажигания

В установившемся режиме горения дут ионизационные и деионизационные процессы в ней находятся в равновесии. Ствол дуги с равным количеством свободных положительных и отрицательных зарядов характеризуется высокой степенью ионизации газа.

Вещество, степень ионизации которого близка к единице, т.е. в котором нет нейтральных атомов и молекул, называют плазмой.

Электрическая дуга характеризуется следующими особенностями:

1. Ясно очерченной границей между стволом дуги и окружающей средой.

2. Высокой температурой внутри ствола дуга, достигающей 6000 — 25000K.

3. Высокой плотностью тока и стволе дуги (100 — 1000 А/мм 2 ).

4. Малыми значениями анодного и катодного падения напряжения и практически не зависит от тока (10 — 20 В).

Вольт-амперная характеристика электрической дуги

Основной характеристикой дуги постоянного тока является зависимость напряжения дуги от тока, которая называется вольт-амперной характеристикой (ВАХ).

Дуга возникает между контактами при некотором напряжении (рис. 3), называемом напряжением зажигания Uз и зависящим от расстояния между контактами, от температуры и давления среды и от скорости расхождения контактов. Напряжение гашения дуги Uг всегда меньше напряжения U з.

Вольт-амперная характеристика дуги постоянного тока (а) и ее схема замещения (б)

Рис. 3. Вольт-амперная характеристика дуги постоянного тока (а) и ее схема замещения (б)

Кривая 1 представляет собой статическую характеристику дуги, т.е. получаемую при медленном изменении тока. Характеристика имеет падающий характер. С ростом тока напряжение на дуге уменьшается. Это означает, что сопротивление дугового промежутка уменьшается быстрее, чей увеличивается ток.

Если с той или иной скоростью уменьшать ток в дуге от I1 до нуля и при этом фиксировать падение напряжения на дуге, то получатся кривые 2 и 3. Эти кривые носят название динамических характеристик.

Чем быстрее уменьшать ток, тем ниже будут лежать динамические ВАХ. Это объясняется тем, что при снижении тока такие параметры дуги, как сечение ствола, температура, не успевают быстро измениться и приобрести значения, соответствующие меньшему значению тока при установившемся режиме.

Падение напряжения на дуговом промежутке:

где U з = U к + U а — околоэлектродное падение напряжения, Ed — продольный градиент напряжения в дуге, Id — дина дуги.

Из формулы следует, что с увеличением длины дуги падение напряжения на дуге будет увеличиваться, и ВАХ будет располагаться выше.

С электрической дугой борются при конструировании коммутационных электрических аппаратов. Свойства электрической дуги используются в установках электродуговой сварки и в дуговых плавильных печах.

Источник

Как измерить ток на выходе инвертора и узнать, а правильно ли он выдаёт?

Вопросом о том, как измерить ток на выходе инвертора чаще всего задаётся в случае каких-то проблем со сварочным аппаратом. Вроде бы и настройки все правильно выставил, и электроды сухие, хорошо прокалённые. А нет, не хочет варить сварочный инвертор.

Читайте также:  Трансформатор для снижения напряжения

Все дело может быть в токе, а если говорить точнее, в его неправильных параметрах. Ну не хочет выдавать инвертор положенные ему 250 ампер и все. Соответственно и возникают вопросы по поводу измерения сварочного тока.

Как измерить сварочный ток инвертора

Очень часто китайские инверторы не выдают положенный ток сварки. И если на вашем инверторе написано красивыми буквами 250 А, то это еще не значит, что инвертор выдаст именно такой ток. Часто проблема может быть и в некачественном, сильно пониженном напряжении. Тогда и о качестве сварочного тока, говорить не приходится.

Как измерить ток на выходе инвертора и узнать, а правильно ли он выдаёт?

Как в домашних условиях можно измерить ток на выходе сварочного инвертора? Здесь все просто и можно воспользоваться специальными клещами или так называемым датчиком Холла. Однако самым действенным способом замерять параметры сварочного тока на выходе из инвертора, является использование мощного амперметра.

Как измерить ток на выходе инвертора и узнать, а правильно ли он выдаёт?

При всем этом, нельзя подключать амперметр напрямую к инвертору, поскольку он либо сгорит, либо не сможет показать действительно реальные параметры сварочного тока. Амперметр к инвертору следует подключать только через шунт, номиналом не менее чем в 200 А, или другой, в зависимости от мощности инвертора.

Как измерить ток на выходе инвертора и узнать, а правильно ли он выдаёт?

Таким образом, можно произвести замеры реального тока, который выдаёт инвертор. Поверьте, вы можете быть неприятно удивлены, узнав, что вместо положенных 200 А, сварочный инвертор выдаёт всего 170 или того ниже.

Какие могут быть проблемы из-за неправильного сварочного тока

Проблемы, которые возникают по вине заниженного или наоборот, завышенного сварочного тока, заключаются в следующем.

Как измерить ток на выходе инвертора и узнать, а правильно ли он выдаёт?

При заниженном сварочном токе:

  • Затруднительный розжиг сварочной дуги и её нестабильное горение;
  • Металл будет быстро остывать;
  • Малая сварочная ванна;
  • Чрезмерно выпуклый сварочный шов;
  • Постоянное прилипание электрода к металлу.

Признаками того, что сварочный ток имеет сильно завышенное значение, является:

  • Разбрызгивание металла при сварке;
  • Небольшая выпуклость сварочного шва и даже возникновение впадины;
  • Чрезмерно большой расход электродов, также говорит о том, что сварочный ток сильно завышен;
  • Сильное шипение при сварке, которое опытный специалист может отличить на слух.

При этом важно понимать, что многие из вышеперечисленных проблем характерны и при использовании сырых электродов, а также при недостаточно хорошей подготовки поверхности металла.

В любом случае, если сварка «не идёт» или возникают различного рода проблемы, лучше будет сразу проверить сварочный инвертор и узнать, а правильные ли параметры тока он выдаёт.

Источник

Напряжение на дуге при сварке — в чем особенности?

Содержание:

Каков принцип работы дуговой сварки? От сварочного трансформатора электрический ток подается к электроду и свариваемому изделию, что создает и поддерживает электрическую дугу. Электрическая дуга нагревается до 7000 градусов, благодаря чему электрод и кромки свариваемых изделий расплавляются и образуют, так называемую, сварочную ванну. Сварочная ванна в течение непродолжительного времени находится в расплавленном состоянии. В это время расплавленный металл электрода смешивается с расплавленным металлом изделия, и образуется защитная пленка. После затвердевания сварочной ванны образуется сварное соединение.

Читайте также:  Стабилизаторы напряжения тесты обзоры

Электрическая энергия, которая необходима, чтобы создать и поддерживать электрическую дугу, образуется в источниках переменного или постоянного тока.

Вольт-амперная характеристика дуги.

Вольт-амперная (статическая) характеристика дуги – зависимость напряжения дуги от тока внешней сети.

Напряжение на дуге при сварке напрямую зависит от величины сварочного тока и длины самой дуги. В ручной дуговой сварке, чем меньше напряжение тока, тем меньше напряжение на дуге. В автоматическом сварочном процессе напряжение дуги зависит лишь от длины самой дуги: чем длиннее электрическая дуга, тем выше ее напряжение, в результате чего увеличивается количество тепла, идущее на плавление металла и флюса.

Напряжение дуги увеличивается до максимального значения, после чего остается неизменным до погасания электрической дуги.

Напряжение на дуге влияет на конечный результат сварки – качество шва и толщину провара. Чем выше напряжение, тем шире шов и меньше глубина провара изделия. Изменение напряжения дуги может привести к появлению так называемых пор и капель расплавленного металла.

Напряжение дуги при ручной сварке колеблется в небольших пределах – 15-30 Вольт, однако в момент замены электрода напряжение может увеличиться до 70 Вольт.

Статистическая характеристика сварочной дуги

Зависимость напряжения дуги от напряжения тока в автоматической сварке.

При увеличении напряжения тока до 80 В напряжение на дуге при сварке резко уменьшается (область I, рис. 2). При небольшой мощности дуги с увеличением тока расширяется площадь сечения и способность столба дуги проводить электричество. Такая статическая характеристика дуги называется падающей; падающая дуга обладает малой устойчивостью. При увеличении напряжения тока от 80 до 800 В (область II, рис. 2) напряжение дуги практически неизменно. Это связано в первую очередь с тем, что увеличивается сечение столба дуги и активного пятна. Это увеличение происходит пропорционально изменению величины сварочного тока, именно поэтому плотность тока, а следовательно и напряжение дуги, не изменяется. Такая статическая характеристика дуги называется жесткой. Жесткую дугу используют чаще всего в сварочной технике. При увеличении напряжения тока более 800 В напряжение самой дуги вновь увеличивается (область III, рис. 2). Рост катодного пятна при увеличении напряжения тока не увеличивается, благодаря чему увеличивается плотность тока, а вместе с ним и напряжение дуги. Такая дуга, получившая название возрастающая, активно используется в сварочных работах под флюсом и в защитных газах и газовых смесях.

Напряжение дуги зависит либо от напряжения тока, либо от длины дуги, в зависимости от вида сварочной работы – автоматический или ручной. Относительно ручной сварки хочется отметить то, что во время замены электрода напряжение дуги поднимается до 70 В, поэтому сварщик должен быть предельно осторожен. В автоматическом сварочном процессе вероятность получения удара током значительно ниже.

Источник