Меню

Как изменяется напряжение при увеличении частоты



Изменением частоты питающей сети

date image2015-01-30
views image4825

facebook icon vkontakte icon twitter icon odnoklasniki icon

Этот способ часто называют частотным регулированием. Он получил большое распространение, т.к. позволяет получить высокое качество регулирования, жесткие механические характеристики в широком диапазоне регулирования скорости вращения. Суть метода очевидна из уравнения скорости идеального холостого хода:

Для реализации этого метода необходим полупроводниковый преобразователь, позволяющий плавно и в широком диапазоне изменять частоту питающей сети. В настоящее время в качестве преобразователей применяются чаще всего тиристорные или транзисторные преобразователи частоты (использование синхронных или коллекторных генераторов в данном случае нецелесообразно — сложность регулирования, проблемы с коммутацией). Вместе с тем задача регулирования частоты не так проста [9].

Оказалось, что одновременно с изменением частоты питающей сети возникает необходимость изменять и напряжение на статоре двигателя . Как известно, приложенное напряжение уравновешивается ЭДС двигателя и падением напряжения на активном сопротивлении статора. Пренебрегая активным сопротивлением статора можно записать, что , но ЭДС:

где: — постоянный коэффициент;

f1 – частота питающей сети;

Ф – магнитный поток;

— число витков обмотки.

Из последнего выражения мы видим, что изменение частоты f1 нарушает баланс между приложенным напряжением и ЭДС двигателя. Для того чтобы его сохранить, необходимо изменять магнитный поток. Учитывая нелинейность магнитной цепи, изменение магнитного потока приведет к нелинейному изменению тока статора. В итоге работа АД при изменении частоты питающей сети при неизменном напряжении питания окажется невозможной При уменьшении частоты питающей сети для сохранения постоянным магнитного потока необходимо одновременно снижать и приложенное к статору напряжение, то есть возникает необходимость двухканального управления АД. Таким образом, задача регулирования частоты вращения АД является задачей регулирования двух параметров: частоты питающей сети f1 и приложенного напряжения U1 (рис. 5.9).

Рис. 5.9. Функциональная схема преобразователя частоты со звеном постоянного тока: УВ- управляемый выпрямитель; И– инвертор; РН- регулятор напряжения; РЧ- регулятор частоты; З- задатчик

С помощью регулятора напряжения, воздействуя на управляемый выпрямитель, изменяем напряжение на статоре Д, а с помощью регулятора частоты, воздействуя на инвертор, изменяем частоту питающей сети.

Закон изменения напряжения привода при изменении частоты питающей сети вывел академик М.Н. Костенко, полагая, что перегрузочная способность Д во всем диапазоне изменения скоростей должна оставаться неизменной, то есть:

Пренебрегая активным сопротивлением фазы статора, уравнение максимального момента можно записать так:

Учитывая, что реактивное сопротивление линейно зависит от частоты, можно записать: . (5.16)

Учитывая, что при неизменной перегрузочной способности отношение моментов при различных скоростях должно соответствовать отношению максимальных моментов:

В этом выражении:

и — статические моменты при работе механизма на скоростях соответствующих и ;

и — напряжения, подводимые к двигателю на тех же частотах.

Из этого выражения видно, что закон изменения напряжения при частотном управлении определяется характером изменения статического момента нагрузки в зависимости от скорости. Рассмотрим наиболее часто встречающиеся случаи.

1) Нагрузка с постоянным статическим моментом . Очевидно, что в этом случае:

2) Момент нагрузки растет пропорционально скорости. При этом:

3) Статический момент нагрузки пропорционален квадрату скорости. В этом случае:

Наибольшее распространение получил первый случай, как самый простой. Преобразователи с функциональным блоком изменения напряжения, реализующим второй и третий закон, используются реже, как правило, в тех случаях, когда требования нагрузки к приводу высоки.

Достоинством частотного метода является широкий диапазон регулирования и высокое качество характеристик. Механические характеристики Д будут выглядеть следующим образом (рис. 5.10).

Рис. 5.10. Механические характеристики АД при

частотном методе регулирования скорости

При уменьшении частоты питающей сети реактивное сопротивление уменьшается и увеличивается влияние активного сопротивления, которым мы пренебрегаем. Это обуславливает некоторое уменьшение перегрузочной способности при низких частотах.

В частотных преобразованиях часто используют двухзонное регулирование. Вторая зона получается за счет увеличения частоты питающей сети. В этом случае имеем уменьшение критического момента, так как увеличить напряжение, пропорционально частоте, мы не можем, и перегрузочная способность снижается.

В рассмотренной системе мы изменяем напряжение для сохранения постоянным магнитного потока, т.е. задача стоит в поддержании постоянным магнитного потока (Ф = const). Если бы нам это удалось сделать непосредственно, мы бы получили лучшие характеристики, но решение задачи затрудняется сложностью измерения магнитного потока. Для его измерения необходимо расположить в воздушном зазоре двигателя несколько датчиков Холла, что довольно сложно и дорого. Либо можно измерить магнитный поток косвенно по изменению ЭДС, которая наводится в витках дополнительной обмотки статора. Но этот метод также неудобен.

На практике система стабилизации магнитного потока не нашла применения.

Для поддержания примерно постоянным магнитного потока целесообразно учесть падение напряжения в первичной цепи. Основную роль играет падение напряжения на активном сопротивлении статора. Для того чтобы учесть падение напряжения, вводят положительную обратную связь по току, которая позволяет скомпенсировать падение напряжения на активном сопротивлении статора R1 и тем самым обеспечивает более строгий закон изменения напряжения при регулировании скорости двигателя. Соответствующая схема управления называется схемой с IR – компенсацией.

Читайте также:  Инвертор напряжения от прикуривателя

Источник

Влияние изменения частоты на работу электрических систем

Влияние изменения частоты на работу электрических системДля электроэнергии основные показатели качества: напряжение и частота, для тепловой энергии: давление, температура пара и горячей воды. Частота связана с активной мощностью (Р), а напряжение с реактивной мощностью (Q).

Все вращающиеся машины и агрегаты рассчитаны таким образом, что экономический коэффициент полезного действия достигается при номинальном числе оборотов в минуту: n = 60f/p ,

где: n — число оборотов в минуту, f — частота тока в сети, p — число пар полюсов.

Частота переменного тока , вырабатываемая генераторами, есть функция числа оборотов турбины. Число оборотов механизмов — функция частоты.

На рис. 1 представлены относительные статические характеристики нагрузки для энергосистемы по частоте.

Анализ зависимостей на рис.1 показывает, что при уменьшении частоты снижается число оборотов двигателя, снижается производительность машин и механизмов.

1. Текстильная фабрика дает брак при изменении частоты от номинальной, т к. изменяется скорость движения нити и станки дают брак.

2. Насосы (питательные), вентиляция (дымососы) тепловых электростанций зависят от числа оборотов: давление пропорционально « n 2 », потребляемая мощность « n 3 », где n — число оборотов в минуту;

3. Активная мощность нагрузки синхронных двигателей пропорциональна частоте (при снижении частоты на 1%, активная мощность нагрузки синхронного двигателя уменьшается на 1%);

4. Активная мощность нагрузки асинхронных двигателей уменьшается на 3% при снижении частоты на 1%;

5. Для энергосистемы снижение частоты на 1% приводит к уменьшению суммарной мощности нагрузки на 1-2%.

Частота тока - 50 гц

Изменение частоты влияет на работу самих электростанций. Каждая турбина рассчитана на определенное число оборотов, то есть при падении частоты снижается вращающий момент турбины. Падение частоты влияет на собственные нужды электростанции и в результате может наступить нарушение работы агрегатов станции.

При понижении частоты из-за нехватки активной мощности снижается нагрузка потребителей, чтобы поддержать частоту на прежнем уровне . Степень изменения нагрузки при изменении частоты на единицу называется регулирующим эффектом нагрузки по частоте . Процесс нарушения устойчивой работы электростанции из-за падения частоты и при отсутствии резерва активной мощности называется лавиной частоты.

Если f =50 Гц, критическая частота при которой производительность основных механизмов собственных нужд электростанций снижается до нуля и наступает лавина частоты — 45 — 46 Гц.

При падении частоты снижается э.д.с. генератора (т.к. понижается скорость возбудителя) и снижается напряжение в сети.

Источник

Закон Ома для переменных тока и напряжения.Зависимость от частоты.

Для переменного тока справедлив закон Ома, однако сопротивление цепи зависит частоты изменения тока.

Переменный ток можно рассматривать как вынужденные электромагнитные колебания. Представим 3 разных цепи, к каждой из которых приложено переменное напряжение U=Umax*cosωt.

Сила тока в цепи с резистром (первый рисунок) будет изменяться в фазе с приложенным напряжением так: I=Imax*cosωt, сила тока в цепи с катушкой индуктивности (центральный рисунок) будет отставать по фазе от приложенного напряжения на π/2 : I=Imax*cos(ωt- π/2), а ток в цепи с конденсатором (правый рисунок) будет опережать по фазе напряжение на π/2 :

Отношение амплитуды напряжения (Umax) к амплитуде силы тока (Imax) по закону Ома выражает сопротивление.

Для цепи с резистором омическое сопротивление R=UmaxR/Imax,

для цепи с катушкой индуктивности – индуктивное сопротивление XL = Umax*L/Imax=Lω,

для цепи с конденсатором – емкостное сопротивление XC = Umax*C/Imax=1/Cω

Реактивное сопротивление — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому или магнитному полю (и обратно).

Величина XL индуктивного сопротивления зависит от индуктивности L элемента и частоты ω протекающего тока. XL =Lω=2πfL. Величина XC ёмкостного сопротивления зависит от ёмкости С элемента и частоты протекающего тока f. XC = 1/Cω=1/2πfC, здесь ω – циклическая частота, равная 2πf.

Прямая и обратная зависимость этих сопротивлений от частоты тока f приводит к тому, что с увеличением частоты всё большую роль начинает играть индуктивное сопротивление и всё меньшую ёмкостное.

16. Импеданс в электрических схемах…

Импеданс — полное электрическое сопротивление цепи переменному току. Полная цепь переменного тока — это цепь из генератора, а также R, C, и Lэлементов, взятых в разных сочетаниях и количествах. Для разбора проходящих в электрических цепях процессов используют полные последовательные и параллельные цепи. Последовательная цепь — это такая цепь, где все элементы могут быть соединены последовательно. При последовательном соединении сопротивления R и емкости Е импеданс: , для угла разности фаз

В параллельной цепи R, C, L элементы соединены параллельно.

для угла разности фаз

Импеданс изменяется с изменением частоты тока, на котором проводится измерение: при увеличении частоты реактивная составляющая импеданса уменьшается. Зависимость импеданса от частоты тока называется дисперсией импеданса.

Особенности полной цепи:

1.Соблюдается закон Ома

2.Полная цепь оказывает переменному току сопротивление. Это сопротивление

называется полным (мнимым, кажущимся) или импедансом.

Читайте также:  Как правильно соединить провода между собой под напряжением

3.Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и

вычисляется не простым, а геометрическим (векторным) суммированием. Для

последовательно соединенных элементов формула импеданса имеет следующее

Z — импеданс последовательной цепи,

R — активное сопротивление,

XL – индуктивное и XC – ёмкостное сопротивление,

L — индуктивность катушки (генри),

C — ёмкость конденсатора (фарад).

импеданс изменяется с изменением частоты

тока, на котором проводится измерение: при увеличении частоты реактивная составляющая импеданса уменьшается. Зависимость импеданса от частоты тока называется дисперсией импеданса.

Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода Т переменного тока. Если время, в течение которого

электрическое поле направлено в одну сторону (Т/2), больше времени релаксации τ какого-либо вида поляризации, то поляризация достигает своего наибольшего значения, и до тех пор, пока T/2>τ, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод T/2 переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть своего максимального значения. После этого диэлектрическая проницаемость начинает

уменьшаться с частотой, а проводимость — возрастать

17 . Электрический диполь- система, состоящая из 2х равных, но противоположных по знаку точечных эл.зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя). Основная

хар-ка эл.диполя – электрический или дипольный момент р(с вектором)=[Кл*м] = произведению заряда на плечо диполя направленный от «-» заряда к «+»

Диполь сам является источником поля.

Понятие о мультиполе.

Диполь является частным случаем системы эл. зарядов, обладающих определенной симметрией. Общее название подобных распределений зарядов – электрические мультиполя.

Они бывают разных порядков(L=0,1,2,и т.д.), число зарядов мультиполя определяется выражением 2 L . Так, так мультиполем нулевого порядка(2 0 =1) является одиночный точечный заряд, мультиполем первого порядка(2 1 =2)-диполь, мультиполем второго порядка(2 2 =4)квадруполь, мультиполем третьего порядка(2 3 =8) октуполь.

Потенциал поля мультиполя убывает в значительных расстояниях от него пропорционально 1/R L +1 . Так, для заряда (L=0) ).

Если заряд распределен в некоторой области пространства, то потенциал электрического поля вне системы зарядов можно представить в виде некоторого приближенного ряда:

Здесь R – расстояние от системы зарядов до точки А с потенциалом , f1,f2,f3,… — некоторые функции, зависящие от вида мультиполя, его зарядов и от направления на точку А.

19. Токовый монополь— единичный источник электрического потенциала. потенциал поля токового монополя в бесконечно проводящей среде: ,где jплотность электрического тока,p-удельное сопротивление среды,фи-потенциал электрического поля, r-расстояние от униполя.

В вакууме или в идеальном диэлектрике эл.диполь может сохраняться сколько угодно долго. В проводящей среде под действием эл.поля диполя возникает движение свободных зарядов и диполь либо экранируется, либо нейтрализуется. При подключении к диполю источника постоянного напряжения диполь в слабо проводящей среде сохраняется, несмотря на наличии тока, такая двухполюсная система –токовый диполь, а ее полюса- истоком и стоком тока. Дипольный момент токового диполя: Рт=I*l,

l- расстояние между электродами.[Рт]=[А*м].

Потенциал поля токового диполя в безгранично проводящей среде: φ=(1/4πϪ)*(Рт*соsἀ/r 2 ),где Ϫ=1/ρ = удельная эл. проводимость. ρ- удельное сопротивление.

21.Диэлектрики— тела, не проводящие эл. Тока. Относят тв.т: эбонит,фарфор, жидк:чистая вода, газы.

При изменении внешних условий диэлектрик может проводить электрический ток. Изменение состояния диэлектрика при помещении в электрическое поле можно объяснить его молекулярным строением.

Условно выделяют три класса диэлектриков:1) с полярными молекулами;2) с неполярными молекулами;3)кристаллические.

К первому классу принадлежат такие вещ-ва, как вода, нитробензол и др. молекулы этих диэлектриков не симметричны,и они обладают электрическим моментом диполя даже когда электрического поля нет. При отсутствии электрического поля дипольные моменты молекул ориентированы хаотически и векторная сумма моментов всех n молекул равна нулю. Если диэлектрик поместить в электрическое поле, то дипольные моменты молекул стремятся ориентироваться вдоль поля.

Ко второму классу диэлектриков относят такие вещества (водород, кислород), молекулы которых при отсутствии электрического поля не имеют дипольных моментов. Если неполярную молекулу поместить в электрическое поле, то разноименные заряды несколько сместятся в противоположную стороны и молекула будет иметь дипольный момент.

Третий класс-кристаллические диэлектрики(поваренная соль), решетка которых состоит из положительных и отрицательных ионов. Его можно схематически рассматривать как совокупность двух «подрешеток»,одна из которых заряжена+, др—. При отсутствии поля подрешетки расположены симметрично и суммарный электрический момент такого диэлектрика равна нулю. Если диэлектрик поместить в электрическое поле, то подрешетки немного сместятся в противоположные стороны и диэлектрик приобретет электрический момент.

Все эти процессы, происходящие в разных диэлектрика, находящиеся в электрическом поле, объединяют общим термином поляризация, т.е. приобретение диэлектриком полярности.

22. Пьезоэле́ктрики — диэлектрики, в которых наблюдается пьезоэффект, то есть те, которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности (прямой пьезоэффект), либо под влиянием внешнего электрического поля деформироваться (обратный пьезоэффект). Оба эффекта открыты братьями Кюри.

Читайте также:  Виды нейтралей электрических сетей по напряжению

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение поляризации сопровождается механическими деформациями. Поэтому, если на металлические обкладки, укрепленные на кристалле, подать электрическое напряжение, то кристалл под действием поля поляризуется и деформируется.

Легко видеть, что необходимость существования обратного пьезоэффекта следует из закона сохранения энергии и факта существования прямого эффекта. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны.

23. Электробезопасность медицинской аппаратуры – комплексная система мероприятий, осуществляемых при разработке, промышленном выпуске и эксплуатации медицинской аппаратуры и направленных на обеспечение полной электробезопасности для обслуживающего персонала и пациентов. Необходимость их обусловлена возможностью поражающего действия электрического тока, используемого в физиотерапевтических аппаратах либо для лечебного воздействия, либо для обеспечения их энергией.

Обеспечение электробезопасности включает три основные группы мероприятий: защита от прикосновения к находящимся под напряжением частям, защита от напряжения прикосновения, защита пациента.

Основное требование – сделать недоступным касание частей аппаратуры находящихся под напряжением. Для этого изолируют части приборов и аппаротов, находящихся под напряжением друг от друга и от корпуса аппаратуры. Изоляция, выполняющая такую роль- основная (рабочая).

Ни одна изоляция не обеспечивает полную безопасность по 2 причинам:

1.сопротивление приборов и аппаратов переменному току не бесконечно, так же оно не бесконечно между проводами электросети и землей.Поэтому при касании человеком корпуса аппаратуры через тело пройдет ток – ток утечки.

2.неисключено, что благодаря порче рабочей изоляции(стар., влажность окр.воздуха) возникает эл.замыкание внутренних частей аппаратуры с корпусом – «пробой на корпус». И внешняя доступная для касания часть апп. окажется под напряжением.

При конструировании и создании мед.аппар. необходимо учитывать допустимую силу тока, как при нормальной работе, так и в случае единичного нарушения — отказ одного из средств защиты от паражения эл.током. допустимые силы токов утечки различают по типам электромедицинских изделий от поражения током.

Н –нормальная степень защиты- такая ст.защиты эквивалентна защите бытовых приборов.

В –изделия с повышенной степенью защиты.

BF- изделия с повышенной степенью защиты и изолированной рабочей частью.

CF-изделия с наивысшей степенью защиты и изолир раб. частью, к этому типу относят в частности изделия с рабочей частью, имеющей эл.контакт с сердцем.♥

24. Классы приборов по способу доп защиты от поражения эл.током.

Н –нормальная степень защиты- такая ст.защиты эквивалентна защите бытовых приборов.

В –изделия с повышенной степенью защиты.

BF- изделия с повышенной степенью защиты и изолированной рабочей частью.

CF-изделия с наивысшей степенью защиты и изолир раб. частью, к этому типу относят в частности изделия с рабочей частью, имеющей эл.контакт с сердцем.♥

Защитное заземление — преднамеренное соединение с землей частей электроустановки. Защитное заземление значительно снижает напряжение, под которое может попасть человек, но это напряжение, может быть не равно нулю. Зануление— преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью трансформатора через нулевой провод сети. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.

Техника безопасности:

— Очень опасно прикосновение к оголенному проводу.

— Опасно пользоваться неисправными электрическими приборами. Электрические приборы должны периодически осматривать квалифицированные специалисты.

— Нельзя собирать, разбирать и исправлять что-либо в электрическом приборе, не отключив его от источника.

25 .Медицинская аппаратура должна нормально функциониро вать.

Важным параметром является ве­роятность безотказной работы. Она оценивается эксперимен­тально отношением числа N работающих за время t изделий к общему числу N испытывавшихся изделий:

Эта характеристика оценивает возможность сохранения изделием работоспособности в заданном интервале времени. Другим количе­ственным показателем надежности является интенсивность от­казов лямбда(t). Этот показатель равен отношению числа отказов dN за время dt к произведению времени dt на общее число N работаю­щих элементов:

Знак «—» поставлен в связи с тем, что dN

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник

Adblock
detector