Меню

Измерение мощности трехфазной сети ваттметром



ТРЁХФАЗНЫЙ ВАТТМЕТР

Давно нужно было создать простой измеритель на Arduino, который бы измерял расход электроэнергии. В то время, как есть в продаже немало доступных по цене счетчиков энергии одной фазы, 3-х фазные счетчики не столь распространены и, как правило, довольно дорогие. Поэтому решено было сделать самодельный. Конечно, для идеально точных измерений нужно измерить потребляемый ток и напряжение, но для этого устройства конструкцию упростили до измерения только тока, что уже дает неплохую оценку потребления киловатт-часов на стандартных электросетях (будем считать что отклонение от нормы напряжения невелико). Этот прибор измеряет ток через каждую фазу с помощью ТТ (трансформатора тока), а затем делает несколько вычислений, чтобы показать на ЖК экране ток, мощность, максимальную мощность и киловатт-часы, затраченные на каждую фазу.

Компоненты для сборки 3-фазного счётчика

  1. Arduino Uno
  2. ЖК-экран
  3. 3 x CTs – Talema AC1030
  4. 3 х 56 Ом нагрузочные резисторы
  5. 3 х 10µF конденсаторы
  6. 6 х 100к резисторы делителя

Внимание – будьте осторожны при подключении устройства к электросети и убедитесь, что питание выключено, прежде чем делать какие-либо соединения!

Процесс изготовления

Сначала нужно начать монтаж компонентов для создания датчиков тока, что производят сигнал, который Arduino может понять. Ардуино имеет только аналоговые входы напряжения, которые измеряют 0-5 В, так что надо преобразовать токовый выход из ТТ в опорное напряжение, а затем масштабировать его в 0-5 В диапазоне напряжений. Если вы собираетесь устанавливать измеритель мощности где-то постоянно, то можно сразу припаять резисторы и конденсатор непосредственно на каждый ТТ, чтобы они не могли отвалиться.

Принципиальная схема подключения ТТ к Arduino

ТРЁХФАЗНЫЙ ВАТТМЕТР - схема

Принципиальная схема подключения ТТ к Arduino

После подключения всех компонентов, нужно подключить датчики к линии, которую вы хотите контролировать. Для подключения к обычной 3-х фазной питающей сети, подсоедините каждый ТТ на каждую из фаз, как показано на схеме. Каждый ТТ должен иметь только один фазный провод, проходящей через его сердечник.

Выбор трансформатора тока

Важный элемент измерителя — трансформатор тока. Здесь используется Talema AC1030, который может выдержать 30 А номинальный, и 75 А максимальный ток. При 220 В, теоретически он может распознавать до 16 кВт в течение коротких периодов времени, но чтобы постоянно быть под нагрузкой — примерно 6 кВт. Чтобы рассчитать максимум мощности — умножьте ток на напряжение (обычно 220 В).

Расчет нагрузочного резистора

Далее нужно рассчитать нагрузочный резистор R3, который преобразует ток в опорное напряжение. Это делается путем деления первичного тока на коэффициент трансформации ТТ. Оно должно быть около 500-5000 к 1. В этой схеме он работал на 42 А с соотношением витков 1000:1, что дает вторичный ток 0.042 А. Аналоговое опорное напряжение на Arduino составляет 2,5 В, и чтобы определить сопротивление используем формулу R=V/I – R = 2.5/0.042=59.5 Ом. Ближайшее стандартное значение резистора 56 Ом, что и было использовано. Вот несколько вариантов разных кольцевых трансформаторов и их подходящие нагрузочные резисторы:

  • Murata 56050C – 10A – 50:1 – 13 Ом
  • Talema AS-103 – 15A – 300:1 – 51 Ом
  • Talema AC-1020 – 20A – 1000:1 – 130 Ом
  • Alttec L01-6215 – 30A – 1000:1 – 82 Ом
  • Alttec L01-6216 – 40A – 1000:1 – 62 Ом
  • Talema ACX-1050 – 50A – 2500:1 – 130 Ом
  • Alttec L01-6218 – 60A – 1000:1 – 43 Ом
  • Talema AC-1060 – 60A – 1000:1 – 43 Ом
  • Alttec L01-6219 – 75A – 1000:1 – 33 Ом
  • Alttec L01-6221 – 150A – 1000:1 – 18 Ом
Читайте также:  Введение мощность переменного тока

Ещё необходимо 2 разделительных резистора, чтобы получить 2.5 вольта опорного напряжения к Arduino. Они должны быть одинаковыми, поэтому в данной схеме используются два резистора по 100 к.

Загрузка прошивки

Теперь можно прошить Arduino, если вы еще не сделали это сразу. Вот архив с кодом. Для проверки работоспособности и точности использовалось пару ламп накаливания — их потребление довольно близко к тому, что указано на этикетке, то есть 100 Вт лампочка использует очень близко к 100 Вт реальной мощности, так как это почти полностью резистивная нагрузка. Теперь необходимо настроить коэффициенты масштабирования, поиграйтесь с различными значениями, глядя что отображается на экране счетчика энергии.

Когда счетчик энергии будет откалиброван и коэффициенты масштабирования будут загружены на Ardunio, ваш 3-фазный измеритель готов к подключению.

После запуска, вы увидите 3 типа данных на экране ваттметра с последующим переключением по току, мощности, максимальной мощности и киловатт-часам потребленной энергии. В верхней строке появится фаза 1 и фаза 2, а в нижней строке отображается значение данных фазы 3.

Источник

Расчет мощности трехфазной сети

Количество потребленной энергии в сети однофазного тока определяется простейшими расчетами, это не вызывает затруднений. Расчет мощности трехфазной сети сопряжен с некоторыми трудностями:

  • Наличие трех фаз вместо одной;
  • Различные схемы соединения потребителей – «звезда» или «треугольник»;
  • Симметрия или ее отсутствие при распределении нагрузки по фазам.

Счетчик электроэнергии

Как узнать свою схему

Для правильного определения и расчета мощности требуется знание нескольких факторов:

  • Количества фаз питания;
  • Способа соединения потребителей.

При однофазном подключении используется два провода:

  • Фазный провод;
  • Нулевой провод.

Для трехфазной сети характерно наличие трех или четырех проводников (подключение с заземленной нейтралью). При этом используется две различных схемы включения:

  • «Треугольник». Каждая нагрузка подсоединяется с двумя соседними. Напряжение каждой фазы подводится к точкам соединения потребителей.
  • «Звезда». Все три потребителя соединяются в одной точке. Ко вторым концам подключаются фазы питания. Это схема с изолированной нейтралью. В схеме с заземленной нейтралью точка соединения потребителей подключается к нулевому проводнику.

Соединение источника и потребителей

Трёхфазное или однофазное подключение

В зависимости от того, какой тип подключения используют, определение потребляемой мощности производится по-разному.

В однофазной сети потребляемая энергия считается по простейшей формуле:

где cosϕ – коэффициент мощности, характеризующий сдвиг фаз между током и напряжением в реактивной нагрузке.

Мощность 3 х фазной сети является суммой потребления по каждой фазе в отдельности. Формула мощности 3 х фазного тока имеет следующий вид:

Читайте также:  Мощность пишется с мягким знаком или без

Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc,

где U, I, cosϕ – напряжение, сила тока и коэффициент мощности в каждой фазе, соответственно.

К сведению. Видно, что в общем случае трехфазное соединение требует большее количество приборов учета.

Иногда посчитать потребление энергии можно по упрощенному варианту. При симметричном потреблении, например, при подключении асинхронного двигателя, токи потребления одинаковы, и формула принимает следующий вид:

где:

  • Uф, Iф – фазные напряжение и ток;
  • Uл, Iл – линейные напряжение и ток.

Асинхронный двигатель

Характеристики трехфазной системы

Трехфазная система электропитания характеризуется несколькими значениями напряжения и тока. Все зависит от того, между какими точками схемы производятся измерения:

  • между фазным проводом и нейтралью – фазное напряжение Uф;
  • между отдельными фазами – линейное Uл.

Соотношение между данными параметрами:

При симметричном распределении нагрузки токи во всех проводах равны. В четырехпроводной схеме (с заземленным нулем) ток в нулевом проводнике отсутствует, поэтому даже при обрыве нуля сеть продолжает нормально функционировать.

В том случае, когда потребление энергии по фазам различается, в нейтральном проводе протекает некоторый ток. Полный обрыв нейтрального проводника вызывает перекос фаз, поэтому напряжение на проводах может измениться в диапазоне от нуля до линейного.

Последствия увеличения сопротивления нейтрали

Реактивный характер нагрузки учитывается коэффициентом мощности cosϕ. Данная величина пришла из теории комплексных чисел, которые используются, когда необходимо рассчитать параметры цепей переменного тока. В случае активной нагрузки cosϕ=1, но, чем более реактивный характер имеют потребители, тем больше коэффициент уменьшается, показывая, как снижается реальная мощность относительно полной.

Важно! Поэтому для правильного расчета и уменьшения нагрузки на генераторное оборудование в реактивных цепях устанавливают корректоры коэффициента мощности. Цепи с корректором приближают коэффициент cosϕ к единице.

Пример расчёта мощностных показателей

Наиболее простым примером может считаться расчет потребления энергии симметричной нагрузкой. Сколько будет потреблять электроэнергии трехфазный асинхронный двигатель, подключенный в сеть с линейным напряжением 380 В, и потребляющий ток 10 А по каждой фазе? Коэффициент мощности cosϕ=0.76. Тогда потребляемая мощность равна:

Более сложный расчет бытовой сети:

  • Фазное напряжение – 220 В;
  • Потребление по линиям – 10 А, 5 А, 2 А;
  • Первые две фазы подключены к активной нагрузке (электроплита, чайник);
  • Третья нагружена на люминесцентные светильники с cosϕ=0,5.

Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc=220∙10+220∙5+220∙2∙0,5=3520 ВА.

Используя онлайн калькулятор расчетов, можно избавиться от большинства ошибок и сократить время вычислений. Требуется лишь правильно ввести данные по текущим параметрам

Измерение мощности ваттметром

Мощность потребления трехфазного тока измеряют, используя ваттметры. Это может быть специальный ваттметр, для 3-х фазной сети, либо однофазный, включенный по определенной схеме. Современные приборы учета электроэнергии часто выполняются по цифровой схемотехнике. Такие конструкции отличаются высокой точностью измерений, большими возможностями оперирования с входными и выходными данными.

Трехфазный цифровой ваттметр

Варианты измерений:

  • Соединение «звезда» с нулевым проводником и симметричная нагрузка – измерительный прибор подключается к одной из линий, считанные показания умножаются на три.
  • Несимметричное потребление тока в соединении «звезда» – три ваттметра в цепи каждой фазы. Показания ваттметров суммируются;
  • Любая нагрузка и соединение «треугольник» – два ваттметра, подключенных в цепь любых двух нагрузок. Показания ваттметров также суммируются.
Читайте также:  Генератор мощностью 500 мвт

Схемы измерения

На практике всегда стараются выполнить нагрузку симметричной. Это, во-первых, улучшает параметры сети, во-вторых, упрощает учет электрической энергии.

Видео

Источник

Измерение мощности трехфазной сети ваттметром

Для измерения мощности постоянного тока достаточно измерить напряжение вольтметром и ток амперметром (метод амперметра и вольтметра). Чаще всего измерение мощности осуществляется одним прибором – ваттметром.

Для измерения мощности постоянного тока достаточно измерить напряжение вольтметром и ток амперметром. Результат определяется по формуле

Метод амперметра и вольтметра пригоден и для измерения полной мощности S = I, а также активной мощности переменного тока, если cosφ = 1

Чаще всего измерение мощности осуществляется одним прибором – ваттметром. Для измерения мощности лучшей является электродинамическая система.

Эта система представляет собой две катушки (рисунок 1), одна из которых неподвижная, а другая – подвижная. Обе катушки подключаются к сети, и взаимодействие их магнитных полей приводит к повороту подвижной катушки относительно неподвижной.

Рисунок 1 – Электродинамическая система измерения мощности

Из уравнения α = k’·I1·I2 видно, что шкала электродинамической системы имеет квадратичный характер. Для устранения этого недостатка подбирают геометрические размеры катушек таким образом, чтобы подучить шкалу, близкую к равномерной.

Ваттметр снабжен двумя измерительными элементами в виде двух катушек: последовательной и параллельной. По первой катушке течет ток, пропорциональный нагрузке, а по второй – пропорциональный напряжению в сети.

Угол поворота подвижной части электродинамического ваттметра пропорционален произведению тока и напряжения в измерительных катушках:

На рисунке 2 показана схема включения ваттметра в однофазную сеть.

Рисунок 2 – Схема включения ваттметра в однофазную сеть (точками обозначены генераторные зажимы ваттметра)

Рисунок устройства ваттметра электродинамической системы и схема включения ваттметра в сеть представлена на рисунке 3.

Рисунок 3 – Рисунок обмоток ваттметра электродинамической системы и схема включения ваттметра в сеть: Н – нагрузка; 1 – обмотка для измерения тока нагрузки; 2 – обмотка для измерения напряжения на нагрузке

В трехфазных сетях для измерения мощности используют один, два и три ваттметра. Если нагрузка симметричная и включена «звездой», то достаточно одного ваттметра (рисунок 4, а). Если в этой же схеме нагрузка несимметрична по фазам, то используются три ваттметра (рисунок 4, б). В схеме соединения потребителей «треугольником» измерение мощности производится двумя ваттметрами (рисунок 4, в).

Рисунок 4 – Измерение мощности в трехфазных сетях: а) измерение мощности симметричной трехфазной нагрузки, включенной по схеме звезда с нулевым проводом (четырехпроводная сеть), одним ваттметром; б) измерение мощности трехфазной нагрузки, включенной по схеме звезда с нулевым проводом (четырехпроводная сеть), методом трех ваттметров; в) измерение мощности трехфазной нагрузки, включенной в трехпроводную сеть, методом двух ваттметров

Основным достоинством ваттметра является высокая точность измерения. К недостаткам относятся малая перегрузочная способность, низкая чувствительность к малым сигналам, заметное влияние внешних магнитных полей.

Источник

Adblock
detector