Меню

Импульсного регулятора постоянного напряжения



12. Импульсное регулирование постоянного напряжения

Импульсное регулирова­ние постоянного напряжения осуществляется при помощи импульсных преобразователей (прерывателей постоянного тока), включенных последо­ва­тельно в цепь нагрузки (рис. 12.1). В зависимости от мощности нагрузки применяют транзисторные или тиристорные прерыватели (ТП).

Импульсный преобразователь или прерыватель постоянного тока предназначен для включения и отключения нагрузки, а также для непосредствен­ного преобразования нерегулируемого напряжения источника постоянного тока в регулируемое. В качестве источника может быть применен аккумулятор, выпрямитель, генератор постоянного тока.

Среднее значение напряжения на нагрузке можно определить из соотношения:

где tи – длительность проводящего состояния преобразователя; tп – длительность непроводящего состояния преобразователя; Тк – период коммутации; fк = 1/ Тк – частота коммутации; δ – коэффициент передачи выпрямителя. Величина, обратная δ, называется скважностью.

Из формулы (12.1) видно, что среднее значение напряжения на нагрузке (U2ср) можно регу­ли­ровать двумя способами:

1) путем изменения интервала проводимости (tи) ключа при постоянстве частоты комму­тации (fк) прерывателя; такое регулирование называется широтно-импульсным (ШИМ) и изображено на рис. 12.2, а;

2) путем изменения частоты коммутации (fк) при постоянстве интервала проводимости (tu); такое регулирование называется частотно-импульсным (ЧИМ), изображено на рис. 12.2, б.

Преимущественное использование на практике ШИМ объясняется наличием следую­щих недостатков у ЧИМ:

· возможностью появления прерывистого тока при низких часто­тах;

· появлением радиопомех на высоких частотах.

Широтно-импульсное регулирование находит все более широкое приме­нение для регулирования и стабилизации электрических параметров на­грузок различного рода (на электротранспорте, в приводе металлообрабатывающих станков, для питания бортовых систем и т.д.) Это объясняется рядом их преимуществ: высоким КПД; высоким быстродействием; точностью регулирования выходного напряжения в широком диапа­зоне; высокой точностью управления при сохранении устойчивости; слабой чувствитель­ностью к изменениям температуры окружающей среды.

Однако им свойственны и некоторые недостатки: наличие пульсаций выходного на­пряже­ния создает необходимость устанавливать фильтры, что вызывает инерционность преоб­разователя и сложность управления для обеспечения устойчивости работы на им­пульсную нагрузку.

Схема импульсного коммутатора постоянного тока (рис. 12.3) содержит силовой тиристор VSc и узел принудитель­ного выключения силового тиристора, содержащий коммутирующий тиристор VSк, ком­му­тирующие индуктивность Lк и емкость Ск, коммутирующий ди

Подготовка схемы к работе начинается с заряда коммутирующей емкости Cк с по­ляр­ностью, указанной на рис. 12.3. Заряд коммутирующей емкости Cк можно осуществить с помощью кнопки Кз через сопротивление Rз по цепи «+» — Cк — Кз — Rз — «-», или при по­мощи специальной системы управления коммутатором, которая первый импульс по­дает на коммутирующий тиристор VSк, и после его открытия происходит заряд Cк.

Работа схемы начинается после включения силового тиристора VSс. При этом обра­зуется две цепи: одна для протекания тока нагрузки, другая – для перезаряда ком­му­тирующей емкости Cк. Время перезаряда емкости Cк определяется параметрами ко­леба­тельного контура, образованного коммутирующими элементами Lк и Ск.

После перезаряд Cк происходит вынужденное выключение силового тиристора VSc с помощью приложенного к нему обратного напряжения через коммутирующий тиристор VSк . В процессе выключения VSc емкость Cк разряжается. После запирания силового ти­ристора в работе остается коммутирующий тиристор VSк и, осуществляя заряд емкости Cк, подготавливает схему к дальнейшей работе.

Импульсный коммутатор переменного тока (рис. 12.4) обладает двухсторонней про­водимостью тока. В одну из диагоналей диодного моста включается ТП с ШИМ, а через другую диагональ подключается нагрузка к сети переменного напряжения. Процессы, происходящие в данной схеме, поясняются диаграммой (рис. 12.5).

В положительную полуволну напряжения сети работают диоды VD1, VD4 им­пульсный коммутатор. Отрицательную полуволну выходного напряжения формируют со­вместно с диодами VD2, VD3 тот же импульсный коммутатор. Процесс регулирования первой гармонической составляющей выходного напряжения осуществляется изменением длтельности работы силового тиристора VSc.

На практике питание нагрузок постоянного тока чаще осуществляется выпрямленным на­пряжением, поэтому представляет интерес работа ТП с ШИМ в цепи нагрузки выпрямителя (рис. 12.7).

Особенностей в работе импульсного коммутатора в цепи выпрямленного тока и в цепи постоянного тока нет, отличие заключается лишь в форме выходного напряжения (рис. 12.7). Выходное напряжение состоит из регулируемых импульсов, полученных из двухполупериодного выпрямленного напряжения. Регули­рова­ние импульсов среднего выпрямленного напряжения осуществляется широтно-ипульсным способом.

Поскольку в обеих схемах (рис. 12.4 и 12.6) тиристорный коммутатор вклю­чен в диагональ выпрямленного тока, то процессы, происходящие собственно в ТП с ШИМ, анало­гичны.

Источник

Импульсные регуляторы постоянного напряжения

Полупроводниковые регуляторы постоянного напряжения применяются в случаях, когда напряжение на нагрузке, питаемой от источника постоянного тока с фиксированным уровнем напряжения (аккумулятор, неуправляемый выпрямитель), необходимо стабилизировать на заданном уровне или плавно регулировать в широких пределах.

Рассматриваемые далее преобразователи основаны на использовании импульсных методов преобразования и регулирования постоянного напряжения. Поэтому их называют импульсными преобразователями (ИП).

В своем составе такой преобразователь содержит силовой ключевой элемент (тиристор, транзистор), с помощью которого нагрузка с регулируемой длительностью подключается и отключается от источника постоянного напряжения.

Выходное напряжение таких преобразователей характеризуется последовательностью импульсов прямоугольной формы с длительностью tи и паузой tп, амплитуда которых близка к напряжению источника питания Е.

Регулирование напряжения на нагрузке можно осуществить двумя способами: изменением интервала проводимости ключа при постоянной частоте переключения ключа (широтно-импульсный) или изменением частоты переключения при постоянном интервале проводимости ключа (частотно-импульсный). При этом регулируется относительное время проводимости ключа, что приводит к плавному изменению среднего напряжения на нагрузке.

T tИ tП

Рисунок 5.4- Выходное напряжение на нагрузке при использовании метода ШИР

Широтно–импульсный метод регулирования (ШИР) осуществляется изменением длительности (ширины) выходных импульсов tи (рисунок 5.4) при неизменном периоде их следования (Т = соnst, f = 1/T = const). Среднее значение выходного напряжения преобразователя при широтно-импульсном регулировании связано с напряжением питания соотношением

(5.2)

где g = tи/Т – коэффициент регулирования.

В соответствии с (5.1) диапазон регулирования выходного напряжения ИП с ШИР составляет от нуля (tи = 0, g = 0) до Е (tи = Т, g = 1).

5.3 Автономные инверторы

Автономные инверторы – это устройства, преобразующие постоянный ток в переменный с постоянной или регулируемой частотой и работающие на автономную нагрузку, не содержащую источников активной энергии той же частоты, что и выходная частота инвертора. При этом частота, напряжение и его форма на выходе определяются режимом работы автономного инвертора.

По характеру протекающих в схеме электромагнитных процессов автономные инверторы подразделяются на инверторы тока, инверторы напряжения и резонансные инверторы.

Так же как и выпрямители, инверторы различаются по мощности, напряжению, числу фаз вторичной обмотки трансформатора, способу регулирования выходного напряжения, по схеме инвертирования и другим факторам.

Работа автономного инвертора и его технико-экономические показатели в основном определяются схемой инвертирования, под которой, как правило, понимают схему соединения вентильных элементов и элементов для их коммутации, а также трансформатора и в отдельных случаях входного или выходного фильтра (если последний оказывает непосредственное влияние на процесс инвертирования). От схемы инвертирования зависят форма кривой выходного напряжения, форма кривой потребляемого тока, внешняя (или нагрузочная) характеристика, к. п. д. инвертора, допустимое изменение коэффициента мощности нагрузки (указываемого обычно по основной гармонике напряжения на нагрузке), максимальное (мгновенное) значение тока нагрузки, определяющее для большинства схем порог устойчивой работы инвертора.

Автономный инвертор тока (АИТ) – это инвертор, форма тока на выходе которого определяется только порядком переключения тиристоров (транзисторов) инвертора, а форма напряжения зависит от характера нагрузки. Питание АИТ должно производиться от источника тока. Если АИТ питается от управляемого выпрямителя, то перевод выпрямителя в режим регулируемого источника тока обычно достигается либо путем включения сглаживающего реактора очень большой индуктивности, либо посредством охвата выпрямителя сильной отрицательной обратной связью по току и использования сглаживающего реактора, индуктивность которого достаточна для сглаживания пульсаций выпрямленного тока.

На рисунке 5.5 представлены схема и диаграммы напряжения и тока на нагрузке для однофазного мостового АИТ на запираемых тиристорах, которые формируются путем последовательного переключения пар тиристоров VS1,VS2 и VS3,VS4.

Рисунок 5.5- Схема однофазного инвертора тока и диаграммы напряжения и тока

5.4 Регуляторы переменного напряжения

Построение регулируемых преобразователей переменного напряжения основывается на использовании полупроводникового коммутатора, функцию которого чаще всего выполняют два включенных встречно-параллельно тиристора в цепи с питающим переменным напряжением и нагрузкой. В таких устройствах применяют фазовые, широтно-импульсный на пониженной частоте и другие методы регулирования переменного напряжения.

uн iн uн

Рисунок 5.6 — Схема однофазного регулятора переменного напряжения и диаграммы напряжения и тока на активной нагрузке

Фазовые методы регулирования базируются на управлении действующим значением переменного напряжения на нагрузке путем изменения длительности открытого состояния одного из включенных встречно-параллельно тиристоров (рисунок 5.6) в течение полупериода частоты сети. Диаграммы напряжений и токов, показанные на рисунке 5.6 для однофазных преобразователей переменного напряжения, соответствуют чисто активной нагрузке. Фазовое регулирование преобразователей переменного напряжения аналогично принципу фазового регулирования управляемых выпрямителей. При способе регулирования, соответствующем рисунку 5.6, запирание тиристоров осуществляется после достижения точек π, 2π и т д. за счет изменения полярности переменного напряжения питания по окончании каждого полупериода (естественная коммутация).

5.4 Регулирование скорости электродвигателя постоянного тока полупроводниковыми преобразователями

Способ регулирования угловойскорости напряжением в цепи якоря в серийных электроприводах постоянного тока осуществляется обычно с помощью однофазных и трехфазных тиристорных выпрямителей (рисунок 5.7) и широтно-импульсных регуляторов ( рисунок 5.8).

Уравнения электромеханической и механической характеристики электродвигателя постоянного тока, питаемого от управляемого выпрямителя в системе регулирования без обратных связей:

ω = (Ud cosα-IRЭ)/ ; ω =Ud cosα/ MRЭ/() 2 , (5.3)

где Ud – среднее значение выпрямленного напряжения для данного типа выпрямителя ( для трехфазной мостовой схемы Ud = 2,34 U);

RЭ – эквивалентное сопротивление цепи якоря;

α — угол управления тиристорами выпрямителя, формируемый схемой управления СУ.

Для широтно-импульсного преобразователя уравнения этих характеристик имеют следующий вид:

ω = (εU–IRЯ) / , ω = εU / MRЯ /() 2 , (5.4)

где ε = tи / T – коэффициент регулирования (tи— длительность импульса, T- период).

+

Рисунок 5.7 – Электропривод на основе трехфазного мостового выпрямителя

VSVD

Рисунок 5.8– Электропривод с импульсным регулятором

Типичный вид механических характеристик для этих схем представлен на рисунке 5.9.

Рисунок 5.9 – а) механические характеристики при питании электродвигателя от управляемого выпрямителя; б) от импульсного регулятора.

Характерной особенностью этих характеристик является резкий подъем характеристик в области малых нагрузок, что обусловлено явлением прерывистых токов.

5.4 Регулирование скорости электродвигателей переменного тока полупроводниковыми преобразователями частоты.

Частоту вращения ротора электродвигателя переменного тока можно определить, как

, (3.1)

где f — частотa питающего напряжения;

pп — число пар полюсов;

s — скольжение.

Изменяя один или несколько параметров, входящих в (3.1), можно регулировать частоту вращения электродвигателя и, следовательно, насоса. На рисунке 3.1 представлены возможные системы регулируемого электропривода нагнетателей. Питание двигателя частотно – регулируемого электропривода осуществляется вентильным преобразователем частоты (ПЧ – рисунок 3.1, а.б), в котором постоянная частота питающей сети преобразуется в переменную . Пропорционально частоте изменяется частота вращения электродвигателя, подключенного к выходу преобразователя. В настоящее время для реализации частотного управления машинами переменного тока применяют различные варианты преобразователей частоты, отличающиеся принципом действия, схемными решениями, алгоритмами управления и т.д.

Источник

Импульсные регуляторы понижающего типа

date image2014-02-24
views image3434

facebook icon vkontakte icon twitter icon odnoklasniki icon

Импульсные регуляторы напряжения

Преобразователи постоянного напряжения

К преобразователям постоянного напряжения относятся импульсные регуляторы напряжения и широтно-импульсные преобразователи.

Импульсные регуляторы напряжения применяются для регулирования постоянного напряжения. По сравнению с другими методами регулирования они обеспечивают лучшие энергетические характеристики, имеют меньшую массу и габариты.

Принцип импульсного регулирования заключается в том, что источник постоянного тока периодически подключается к нагрузке с некоторой частотой. Длительность интервала подключения tu за один период T определяет величину напряжения на нагрузке. Нагрузке (если она активная) придаётся индуктивный характер с помощью дросселя L. Параметры цепи выбирают таким образом, чтобы постоянная времени цепи нагрузки значительно превышала период коммутации тока. При этом в цепи нагрузки обеспечивается непрерывное протекание тока с допустимой пульсацией.

Схема импульсного регулятора понижающего типа приведена на рис. 3.1 (a), временные диаграммы работы этой схемы – на рис. 3.1 (б).

При включённом транзисторе VT ток дросселя нарастает практически по линейному закону от Imin до Imax. Напряжение на дросселе при этом равно:

при условии, что .

При выключенном транзисторе ток дросселя уменьшается от Imax до Imin, при этом напряжение на дросселе обеспечивает значение напряжения на нагрузке:

Из равенства нулю среднего значения напряжения на дросселе следует:

Следовательно, изменяя коэффициент заполнения управляющих импульсов, можно регулировать напряжение на нагрузке в пределах 0…EП.

С учётом падений напряжения на транзисторе и диоде реальное максимальное напряжение составляет (0.9 … 0.95)EП.

Если нагрузка имеет индуктивный характер (например, двигатель постоянного тока), то требуемое значение пульсаций тока достигается за счёт выбора частоты коммутации транзистора VT. Абсолютная величина равна:

и максимальное значение достигается при КЗ = 0.5. С учётом этого требуемое значение частоты коммутации для обеспечения требуемого коэффициента пульсации тока равно:

При активном характере сопротивления нагрузки в цепь включается дроссель с индуктивностью L, который определяет пульсации тока в нагрузке. Для уменьшения индуктивности дросселя параллельно нагрузке включается конденсатор. Для обеспечения непрерывного характера тока дросселя величина должна удовлетворять условию:

При наличии конденсатора переменная составляющая тока дросселя (треугольная по форме) замыкается через конденсатор. Падение напряжения на конденсаторе, обусловленное током первой гармоники, определяет пульсации напряжения на нагрузке:

Для треугольной формы тока амплитуда первой гармоники максимальна при КЗ = 0.5 и составляет (согласно разложению в ряд Фурье):

При использовании в качестве коммутирующего элемента мощных полевых транзисторов MOSFET и IGBT частота коммутации может составлять десятки – сотни килогерц.

При использовании тиристоров частота коммутации не превышает нескольких килогерц. Схема импульсного регулятора на незапираемом тиристоре с принудительной коммутацией приведена на рис. 3.2.

Для запирания основного тиристора VS1 используются вспомогательный тиристор VS2 и коммутирующий конденсатор С. Предварительно конденсатор С заряжается по цепи VS2 – R – Lн до напряжения питания. После включения VS1 конденсатор перезаряжается по цепи VS1 – VD1 – Lк – С, причём переходной процесс носит колебательный характер. Наличие диода VD1 приводит к тому, что в цепи протекает только первый положительный полупериод тока конденсатора, после чего напряжение на конденсаторе не изменяется. Для выключения тиристора VS1 включается тиристор VS2 и конденсатор С разряжаясь по цепи VS2, VS1 выключает, приложенным в обратном направлении напряжением, тиристор VS1. При этом напряжение на нагрузке скачком увеличится до значения E+Uc. Ток нагрузки на интервале коммутации остаётся неизменным, поэтому напряжение на конденсаторе изменяется по линейному закону. Когда конденсатор С разрядится до нуля, на аноде тиристора VS1 вновь нарастает прямое напряжение со скоростью . Для надёжного запирания тиристора VS1 время разряда конденсатора должно быть больше времени выключения тиристора.

Далее напряжение на нагрузке продолжает линейно снижаться до полного перезаряда конденсатора С через тиристор VS2. Когда ток тиристора VS2 уменьшится до нуля, он выключится. Ток нагрузки замыкается по цепи диода VD.

Наличие “всплесков” напряжения на нагрузке требует выбирать полупроводниковые приборы на двойное напряжение питания. Кроме того, диапазон регулирования напряжения уменьшается, так как при малых коэффициентах заполнения эти “всплески” не позволяют снизить напряжение меньше определённого уровня.

В схеме импульсного регулятора с мягкой коммутацией основной тиристор VS1 шунтируется в обратном направлении диодом VD2 (рис. 3.3).

Процесс перезаряда конденсатора С происходит так же, как и в предыдущей схеме. После включения тиристора VS2 в цепи C – Lк – VS2 – VS1 – C возникает колебательный переходной процесс перезаряда конденсатора. Когда мгновенное значение разрядного тока конденсатора равно мгновенному току нагрузки, тиристор VS1 обесточивается и далее разность токов конденсатора и нагрузки замыкается по диоду VD2. К основному тиристору VS1 приложено обратное напряжение, равное прямому падению напряжения на диоде VD2. Ток через VD2 должен протекать в течение времени, достаточного для выключения основного тиристора VS1. Когда ток конденсатора станет меньше тока нагрузки происходит дополнительный заряд конденсатора током нагрузки, и напряжение на нагрузке уменьшается по линейному закону, на этом интервале разностный ток нагрузки и конденсатора замыкается через диод VD. Мгновенное значение напряжения на нагрузке не превышает величину Е.

Включение параллельно основному тиристору обратного диода позволяет отдавать мощность нагрузки в источник электропитания. Такой режим возможен при переходе двигателя постоянного тока в генераторный режим (режим динамического торможения). Вместе с тем, за счёт низкого обратного напряжения, приложенного к основному тиристору, увеличивается время выключения тиристора.

Схема импульсного регулятора, позволяющего регулировать напряжение на нагрузке от EП и выше, приведена на рис. 3.4.

Повышение напряжения на нагрузке осуществляется за счёт энергии дросселя, включённого последовательно в цепь нагрузки. При включенном транзисторе VT дроссель подключается к источнику постоянного напряжения, ток дросселя линейно нарастает от Imin до Imax. Напряжение на дросселе практически равно EП.

Закрытый диод разделает схему на два участка. Ранее заряженный конденсатор С разряжается на нагрузку, обеспечивая непрерывность тока нагрузки.

При закрытом транзисторе ток дросселя замыкается через открывшийся диод уменьшается от Imax до Imin. Напряжение на дросселе меняет полярность и по отношению к нагрузке включено последовательно согласно с источником питания:

Из равенства нулю среднего значения напряжения на дросселе следует:

Регулировочная характеристика (рис. 3.5) повышающего импульсного регулятора нелинейная, причём её вид зависит от соотношения сопротивлений элементов схемы (транзистора, диода, дросселя) и сопротивления нагрузки. При увеличении этого соотношения максимум напряжения уменьшается и устойчивая работа регулятора возможна до определённой величины коэффициента заполнения управляющих импульсов.

Среднее значение тока диода равно току нагрузки:

Среднее значение тока дросселя, а, следовательно, и источника постоянного напряжения равно:

Среднее значение тока транзистора равна:

Все полупроводниковые приборы должны быть выбраны на напряжение не меньше, чем максимальное значение напряжения на нагрузке.

Импульсные регуляторы для двигателей постоянного тока кроме регулирования величины напряжения, подаваемого на двигатель, должны выполнять ещё функции реверсирования (изменения полярности выходного напряжения) и динамического торможения (возврат энергии в источник постоянного напряжения при переходе двигателя в генераторный режим). Эти функции выполняются с помощью преобразователей постоянного напряжения с широтно-импульсным управлением.

Преобразователь представляет собой мостовую схему на полностью управляемых ключах, которые зашунтированы обратными диодами (рис. 3.6).

Обратные диоды используются для возврата энергии в источник, поэтому если источник постоянного напряжения не обладает двусторонней проводимостью (например, выпрямитель), то выход источника необходимо зашунтировать конденсатором С соответствующей ёмкости.

Основные параметры преобразователя определяются алгоритмом управления ключами. Различают три способа управления ключами:

При симметричном управлении ключи коммутируются попарно в противофазе. При включении ключей К1 и К4 напряжение на двигателе равно EП и имеет положительную полярность; при включении К2 и К3 напряжение на двигателе меняет полярность, оставаясь таким же по величине. Среднее значение напряжения на нагрузке определяется с учётом напряжений обеих полярностей (рис. 3.7 (а)).

Величина напряжения определяется коэффициентом заполнения управляющих импульсов: для одной пары ключей (К1 и К4) равен KЗ, а для другой (К2 и К3) – 1-KЗ:

В интервале изменения KЗ от 0 до 0.5 напряжение на нагрузке изменяется от —EП до 0, а в интервале от 0.5 до 1 – от 0 до EП.

Форма тока нагрузки имеет такой же характер, как и в импульсных регуляторах: при включённых ключах К1 и К4 ток нагрузки линейно нарастает от Imin до Imax, когда К1 и К4 закрыты, то ток нагрузки, определяемый индуктивностью нагрузки, через диоды VD2 и VD3 возвращает в источник энергию, запасённую в индуктивности, и уменьшается от Imax до Imin.

При работе нагрузки (двигатель постоянного тока) в генераторном режиме, когда э.д.с. якоря EЯ больше ЕП, ток нагрузки меняет своё направление и при включённых ключах К1 и К4 ток нагрузки через диоды VD1 и VD4 возвращает энергию в источник, при этом ток уменьшается от —Imax до —Imin, а при включенных ключах К2 и К3 ток нагрузки увеличивается от —Imin до —Imax, запасая энергию в индуктивности нагрузки. При изменении коэффициента заполнения управляющих импульсов изменяется величина энергии, возвращаемой в источник.

Симметричный способ управления характеризуется повышенными пульсациями тока нагрузки вследствие изменения напряжения на нагрузке от —EП до +EП, и непропорциональной зависимостью напряжения на нагрузке от коэффициента заполнения.

При несимметричном методе управления для положительной полярности напряжения на нагрузке ключи К1 и К2 управляются в противофазе, ключ К4 постоянно открыт, а К3 – постоянно закрыт. Для отрицательной полярности напряжения – наоборот: К3 и К4 управляются в противофазе, К2 – открыт, К1 – закрыт. Далее рассматривается работа преобразователя при положительной полярности напряжения на нагрузке (рис 3.7 (б)).

При открытом ключе К1 ток нагрузки увеличивается от Imin до Imax, напряжение на нагрузке равно +EП. Когда К1 закрывается, ток нагрузки замыкается через К4 и VD2, уменьшаясь от Imax до Imin, при этом напряжение на нагрузке практически равно нулю. Коэффициент заполнения управляющих импульсов может изменяться от 0 до 1, при этом напряжение на нагрузке меняется от 0 до +EП:

При работе нагрузки в генераторном режиме при открытом К1 ток нагрузки через диоды VD1 и VD4 возвращает энергию в источник, а при открытом К2 ток нагрузки замыкается через К2 и VD4, накапливая энергию в индуктивности нагрузки.

При недостаточно высокой граничной частоте коммутации ключей увеличить частоту пульсаций тока в нагрузке в два раза позволяет поочерёдный способ управления ключами. Если нет необходимости осуществлять режим возврата энергии в источник, то управляющее напряжение подаётся только на ключи одной диагонали: для положительного напряжения на К1 и К4, для отрицательного – на К2 и К3.

Форма управляющего напряжения показана на рис. 3.8 (а).

Длительность импульса изменяется в пределах от до , а паузы управляющих напряжений сдвинуты на половину периода . Напряжение на нагрузке равно напряжению питания, когда оба ключа открыты, и равно нулю, когда один из ключей закрыт. Ток нагрузки при этом замыкается через другой открытый ключ и соответствующий обратный диод. Такая ситуация возникает два раза за период управляющего напряжения, поэтому частота пульсаций напряжения и тока в нагрузке в два раза выше. Изменение длительности управляющих импульсов от до соответствует изменению коэффициента заполнения импульсов напряжения на нагрузке от 0 до 1.

Если управлять ключом К2 в противофазе с ключом К1, а ключом К3 в противофазе с ключом К4, то преобразователь может работать в режиме возврата энергии в источник при работе двигателя постоянного тока в генераторном режиме (рис. 3.8 (б)).

Источник

Читайте также:  Электромагнитная совместимость по отклонению напряжения