Меню

Функциональное напряжение механизмов адаптации



Функциональная система адаптации

date image2015-04-01
views image5195

facebook icon vkontakte icon twitter icon odnoklasniki icon

В достижении устойчивой и совершенной адаптации большую роль играют перестройка регуляторных приспособительных механизмов и мобилизация физиологических резервов, а также последовательность их включения на разных функциональных уровнях. Вначале включаются обычные физиологические реакции и лишь затем реакции напряжения механизмов адаптации, требующие значительных энергетических затрат с использованием резервных возможностей организма, что приводит к формированию специальной функциональной системы адаптации, обеспечивающей конкретную деятельность человека. Такая функциональная система у спортсменов представляет собой вновь сформированное взаимоотношение нервных центров, гормональных, ве­гетативных и исполнительных органов, необходимое для решения за­дач приспособления организма к физическим нагрузкам.

Морфофункциональной основой такой системы является образование в организме системного структурного следа в ответ на мышечную работу, что проявляется созданием новых межцентральных взаимосвязей, повышением активности дыхательных ферментов, гипер­трофией сердца, скелетных мышц и надпочечников, увеличением количе­ства митохондрий, усилением функций вегетативных систем.

В целом, функциональная система, ответственная за адаптацию к физическим нагрузкам, включает в себя три звена:

1)афферентное,

2)центральное регуляторное и

3)эффекторное.

1) Афферентное звено функциональной системы адаптации со­стоит из рецепторов, а также чувствительных нейронов и совокупностей афферентных нервных клеток в центральной нервной системе. Все эти элементы нервной системы воспринимают раздражения из внешней среды и от самого организма и участвуют в осуществлении так называемого аф­ферентного синтеза, необходимого для адаптации. Афферентный синтез возникает, по П. К. Анохину, при взаимодействии мотивации, памяти, об­становочной и пусковой информации. В спорте, в одних случаях (например, у бегунов, лыжников, гимнастов), афферентный синтез для принятия решения о начале своих движений относительно прост и это об­легчает формирование адаптивной системы, в других же (единоборства, спортивные игры), весьма сложен и это затрудняет образование такой сис­темы.

2) Центральное регуляторное звено функциональной системы представлено нейрогенными и гуморальными процессами управ­ления адаптивными реакциями. В ответ на афферентные сигналы нейрогенная часть звена включает двигательную реакцию и мобилизует вегета­тивные системы на основе рефлекторного принципа регуляции функций. Афферентная импульсация от рецепторов к коре головного мозга вызывает возникновение положительных (возбудительных) и отрицательных (тормозных) процессов, которые и формируют функциональную адаптив­ную систему. В адаптированном организме нейрогенная часть звена быст­ро и четко реагирует на афферентную импульсацию соответствующей мы­шечной активностью и мобилизацией вегетативных функций. В неадапти­рованном организме такого совершенства нет, мышечное движение будет выполнено приблизительно, а вегетативное обеспечение окажется недоста­точным.

При поступлении сигнала о физической нагрузке одновременно с опи­санными выше изменениями происходит нейрогенная активация гумораль­ной части центрального регуляторного звена, ответственного за управление адаптационным процессом. Функциональное значение гуморальных реак­ций (повышенное высвобождение гормонов, ферментов и медиаторов) оп­ределяется тем, что они путем воздействия на метаболизм органов и тканей обеспечивают более полноценную мобилизацию функциональной адаптив­ной системы и ее способность к длительной работе на повышенном уровне.

3) Эффекторное звено функциональной системы адаптации включает в себя скелетные мышцы, органы дыхания, кровообращения, кровь и другие вегетативные системы. Интенсивность и длительность фи­зических нагрузок на уровне скелетных мышц определяется тремя основ­ными факторами: числом и типом активируемых моторных единиц; уров­нем и характером биохимических процессов в мышечных клетках; особен­ностями кровоснабжения мышц, от чего зависит приток кислорода, пита­тельных веществ и удаление метаболитов. Увеличение силы, скорости и точности движений в процессе долговременной адаптации достигается двумя основными процессами: формированием в центральной нервной системе функциональной системы управления движениями и морфофункциональными изменениями в мышцах (гипертрофия мышц, увеличение мощности систем аэробного и анаэробного энергообразования, перераспределение кровотока и др.).

Таким образом, формирование функциональной адаптивной системы с вовлечением в этот процесс различных морфофункциональных структур организма составляет принципиальную основу долговременной адаптации к физическим нагрузкам и реализуется повышением эффективности дея­тельности различных органов и систем, и организма в целом. Зная закономерности формирования функциональной системы, можно различными средствами эффективно влиять на отдельные ее звенья, ускоряя приспо­собление к физическим нагрузкам и повышая тренированность, т. е. управ­лять адаптационным процессом.

Источник

Основное место образования новых адаптационных программ у человека — кора больших полушарий при участии таламических и гипоталамических структур

Механизмы адаптации

Фазовый характер адаптации
Процесс адаптации носит фазовый характер. Первая фаза – начальная, характеризуется тем, что при первичном воздействии внешнего, необычного по силе или длительности фактора возникают генерализованные физиологические реакции, в несколько раз превышающие потребности организма. Эти реакции протекают некоординированно, с большим напряжением органов и систем. Поэтому их функциональный резерв скоро истощается, а приспособительный эффект низкий, что свидетельствует о «несовершенстве» данной формы адаптации. Полагают, что адаптационные реакции на начальном этапе протекают на основе готовых физиологических механизмов. При этом программы поддержания гомеостаза могут быть врожденными или приобретенными (в процессе предшествующего индивидуального опыта) и могут существовать на уровне клеток, тканей, фиксированных связей в подкорковых образованиях и, наконец, в коре больших полушарий благодаря ее способности образовывать временные связи.
Примером проявления первой фазы адаптации может служить рост легочной вентиляции и минутного объема крови при гипоксическом воздействии и т. п. Интенсификация деятельности висцеральных систем в этот период происходит под влиянием нейрогенных и гуморальных факторов. Любой агент вызывает активизацию в нервной системе гипоталамических центров. В гипоталамусе информация переключается на эфферентные пути, стимулирующие симпатоадреналовую и гипофизарно-надпочечниковую системы. В результате происходит усиленное выделение гормонов: адреналина, норадреналина и глюкокортикоидов. Вместе с тем возникающие на начальном этапе адаптации нарушения в дифференцировке процессов возбуждения и торможения в гипоталамусе приводят к дезинтеграции регуляторных механизмов. Это сопровождается сбоями в функционировании дыхательной, сердечно-сосудистой и других вегетативных систем.
На клеточном уровне в первой фазе адаптации происходит усиление процессов катаболизма. Благодаря этому поток энергетических субстратов, кислорода и строительного материала поступает в рабочие органы.
Вторая фаза – переходная к устойчивой адаптации. Она проявляется в условиях сильного или длительного влияния возмущающего фактора, либо комплексного воздействия. При этом возникает ситуация, когда имеющиеся физиологические механизмы не могут обеспечить должного приспособления к среде. Необходимо создание новой системы, создающей на основе элементов старых программ новые связи. Так, при действии недостатка кислорода создается функциональная система на основе кислородтранспортных систем.
Основным местом образования новых адаптационных программ у человека является кора больших полушарий при участии таламических и гипоталамических структур. Таламус предоставляет при этом базовую информацию. Кора больших полушарий благодаря способности к интеграции информации, образованию временных связей в форме условных рефлексов и наличию сложного социально обусловленного поведенческого компонента формирует эту программу. Гипоталамус отвечает за реализацию вегетативного компонента программы, заданной корой. Он осуществляет ее запуск и коррекцию. Следует отметить, что вновь образованная функциональная система непрочна. Она может быть «стерта» торможением, вызванным образованием других доминант, либо угашена при неподкреплении.
Адаптивные изменения во второй фазе затрагивают все уровни организма.
• На клеточно-молекулярном уровне в основном происходят ферментативные сдвиги, которые обеспечивают возможность функционирования клетки при более широком диапазоне колебаний биологических констант.
• Динамика биохимических реакций может служить причиной изменения морфологических структур клетки, определяющих характер ее работы, например клеточных мембран.
• На уровне ткани проявляются дополнительные структурно-морфологические и физиологические механизмы. Структурно-морфологические изменения обеспечивают протекание необходимых физиологических реакций. Так, в условиях высокогорья в эритроцитах человека отмечено увеличение содержания фетального гемоглобина.
• На уровне органа или физиологической системы новые механизмы могут действовать по принципу замещения. Если какая-либо функция не обеспечивает поддержание гомеостаза, она замещается более адекватной. Так, увеличение легочной вентиляции при нагрузках может происходить как за счет частоты, так и за счет глубины дыхания. Второй вариант при адаптации является для организма более выгодным. Среди физиологических механизмов можно привести изменение показателей активности центральной нервной системы.
• На организменном уровне либо действует принцип замещения, либо осуществляется подключение дополнительных функций, что расширяет функциональные возможности организма. Последнее происходит благодаря нейрогуморальным влияниям на трофику органов и тканей.
Третья фаза – фаза устойчивой или долговременной адаптации. Основным условием наступления этого этапа адаптации является многократное либо длительное действие на организм факторов, мобилизующих вновь созданную функциональную систему. Организм переходит на новый уровень функционирования. Он начинает работать в более экономном режиме за счет уменьшения затрат энергии на неадекватные реакции. На данном этапе преобладают биохимические процессы на тканевом уровне. Накапливающиеся в клетках под влиянием новых факторов среды продукты распада становятся стимуляторами реакций анаболизма. В результате перестройки клеточного обмена процессы анаболизма начинают преобладать над катаболическими. Происходит активный синтез АТФ из продуктов ее распада.
Метаболиты ускоряют процесс транскрипции РНК на структурных генах ДНК. Увеличение количества информационной РНК вызывает активацию трансляции, приводящую к интенсификации синтеза белковых молекул. Таким образом, усиленное функционирование органов и систем оказывает влияние на генетический аппарат ядер клетки. Это приводит к формированию структурных изменений, которые увеличивают мощность систем, ответственных за адаптацию. Именно этот «структурный след» является основой долговременной адаптации.

Читайте также:  Напряжение лицевых мышц причины

Признаки достижения адаптации
По своей физиологической и биохимической сути адаптация – это качественно новое состояние, характеризующееся повышенной устойчивостью организма к экстремальным воздействиям. Главная черта адаптированной системы – экономичность функционирования, т. е. рациональное использование энергии. На уровне целостного организма проявлением адаптационной перестройки является совершенствование функционирования нервных и гуморальных регуляторных механизмов. В нервной системе повышается сила и лабильность процессов возбуждения и торможения, улучшается координация нервных процессов, совершенствуются межорганные взаимодействия. Устанавливается более четкая взаимосвязь в деятельности эндокринных желез. Усиленно действуют «гормоны адаптации» – глюкокортикоиды и катехоламины.
Важным показателем адаптационной перестройки организма является повышение его защитных свойств и способность осуществлять быструю и эффективную мобилизацию иммунных систем. Следует отметить, что при одних и тех же адаптационных факторах и одних и тех же результатах адаптации организм использует индивидуальные стратегии адаптации.

Оценка эффективности адаптационных процессов
С целью определения эффективности адаптационных процессов разработаны определенные критерии и методы диагностики функциональных состояний организма. Р.М. Баевским (1981) предложено учитывать пять основных критериев: 1. Уровень функционирования физиологических систем. 2. Степень напряжения регуляторных механизмов. 3. Функциональный резерв. 4. Степень компенсации. 5. Уравновешенность элементов функциональной системы.
Методы диагностики функциональных состояний направлены на оценку каждого из перечисленных критериев. 1. Уровень функционирования отдельных физиологических систем определяется традиционными физиологическими методами. 2. Степень напряжения регуляторных механизмов исследуется: косвенно методами математического анализа ритма сердца, путем изучения минерало-секреторной функции слюнных желез и суточной периодики физиологических функций. 3. Для оценки функционального резерва наряду с известными функционально-нагрузочными пробами изучают «цену адаптации», которая тем ниже, чем выше функциональный резерв. 4. Степень компенсации можно определить по соотношению специфических и неспецифических компонентов стрессорной реакции. 5. Для оценки уравновешенности элементов функциональной системы важное значение имеют такие математические методы, как корреляционный и регрессионный анализ, моделирование методами пространства состояний, системный подход. В настоящее время разрабатываются измерительно-вычислительные комплексы, позволяющие осуществлять динамический контроль за функциональным состоянием организма и прогнозирование его адаптационных возможностей.

Нарушение механизмов адаптации
Нарушение процесса адаптации носит поэтапный характер:
• Начальный этап – это состояние функционального напряжения механизмов адаптации. Наиболее характерным его признаком является высокий уровень функционирования, который обеспечивается за счет интенсивного или длительного напряжения регуляторных систем. Из-за этого существует постоянная опасность развития явлений недостаточности.
• Более поздний этап пограничной зоны – состояние неудовлетворительной адаптации. Для него характерно уменьшение уровня функционирования биосистемы, рассогласование отдельных ее элементов, развитие утомления и переутомления. Состояние неудовлетворительной адаптации является активным приспособительным процессом. Организм пытается приспособиться к чрезмерным для него условиям существования путем изменения функциональной активности отдельных систем и соответствующим напряжением регуляторных механизмов (увеличение «платы» за адаптацию). Однако вследствие развития недостаточности нарушения распространяются на энергетические и метаболические процессы, и оптимальный режим функционирования не может быть обеспечен.
• Состояние срыва адаптации (полома адаптационных механизмов) может проявляться в двух формах: предболезни и болезни.
• Предболезнь характеризуется проявлением начальных признаков заболеваний. Это состояние содержит информацию о локализации вероятных патологических изменений. Данная стадия обратима, поскольку наблюдаемые отклонения носят функциональный характер и не сопровождаются существенной анатомо-морфологической перестройкой.
• Ведущим признаком болезни является ограничение приспособительных возможностей организма.
Недостаточность общих адаптационных механизмов при болезни дополняется развитием патологических синдромов. Последние связаны с анатомо-морфологическими изменениями, что свидетельствует о возникновении очагов локального изнашивания структур. Несмотря на конкретную анатомо-морфологическую локализацию, болезнь остается реакцией целостного организма. Она сопровождается включением компенсаторных реакций, представляющих физиологическую меру защиты организма против болезни.

Методы увеличения эффективности адаптации
Они могут быть неспецифическими и специфическими. Неспецифические методы увеличения эффективности адаптации: активный отдых, закаливание, оптимальные (средние) физические нагрузки, адаптогены и терапевтические дозировки разнообразных курортных факторов, которые способны повысить неспецифическую резистентность, нормализовать деятельность основных систем организма и тем самым увеличить продолжительность жизни.
Рассмотрим механизм действия неспецифических методов на примере адаптогенов. Адаптогены – это средства, осуществляющие фармакологическую регуляцию адаптивных процессов организма, в результате чего активизируются функции органов и систем, стимулируются защитные силы организма, повышается сопротивляемость к неблагоприятным внешним факторам.
Увеличение эффективности адаптации может достигаться различными путями: с помощью стимуляторов-допингов либо тонизирующих средств.
• Стимуляторы, возбуждающе влияя на определенные структуры центральной нервной системы, активизируют метаболические процессы в органах и тканях. При этом усиливаются процессы катаболизма. Действие данных веществ проявляется быстро, но оно непродолжительно, поскольку сопровождается истощением.
• Применение тонизирующих средств приводит к преобладанию анаболических процессов, сущность которых заключается в синтезе структурных веществ и богатых энергией соединений. Эти вещества предупреждают нарушения энергетических и пластических процессов в тканях, в результате происходит мобилизация защитных сил организма и повышается его резистентность к экстремальным факторам. Механизм действия адаптогенов: они, во-первых, могут действовать на внеклеточные регуляторные системы – ЦНС и эндокринную систему, а также непосредственно взаимодействовать с клеточными рецепторами разного типа, модулировать их чувствительность к действию нейромедиаторов и гормонов). Наряду с этим адаптогены способны непосредственно воздействовать на биомембраны влияя на их структуру, взаимодействие основных мембранных компонентов – белков и липидов, повышая стабильность мембран, изменяя их избирательную проницаемость и активность связанных с ними ферментов. Адаптогены могут, проникая в клетку, непосредственно активизировать различные внутриклеточные системы. По своему происхождению адаптогены могут быть разделены на две группы: природные и синтетические.
Источниками природных адаптогенов являются наземные и водные растения, животные и микроорганизмы. К наиболее важным адаптогенам растительного происхождения относятся женьшень, элеутерококк, лимонник китайский, аралия маньчжурская, заманиха и др. Особой разновидностью адаптогенов являются биостимуляторы. Это экстракт из листьев алоэ, сок из стеблей каланхоэ, пелоидин, отгоны лиманной и иловой лечебных грязей, торфот (отгон торфа), гумизоль (раствор фракций гуминовых кислот) и т. п. К препаратам животного происхождения относятся: пантокрин, получаемый из пантов марала; рантарин– из пантов северного оленя, апилак – из пчелиного маточного молочка. Многие эффективные синтетические адаптогены получены из природных продуктов (нефти, угля и т. п.). Высокой адаптогенной активностью обладают витамины. Специфические методы увеличения эффективности адаптации. Эти методы основаны на повышении резистентности организма к какому-либо определенному фактору среды: холоду, высокой температуре, гипоксии и т. п.
Рассмотрим некоторые специфические методы на примере адаптации к гипоксии.
• Использование адаптации в условиях высокогорья для повышения адаптационных резервов организма. Пребывание в горах увеличивает «высотный потолок», т. е. устойчивость (резистентность) к острой гипоксии. Отмечены различные типы индивидуальной адаптации к гипоксии, в том числе и диаметрально противоположные, направленные в конечном счете как на экономизацию, так и на гиперфункцию сердечно-сосудистой и дыхательной систем.
• Применение различных режимов барокамерной гипоксической тренировки является одним из наиболее доступных методов повышения высотной устойчивости. При этом доказано, что адаптационные эффекты после тренировки в горах и в барокамере при одинаковой величине гипоксического стимула и равной экспозиции весьма близки. В. Б. Малкиным и др. (1977, 1979, 1981, 1983) предложен метод ускоренной адаптации к гипоксии, позволяющий за минимальный срок повысить высотную резистентность. Этот метод получил название экспресс-тренировки. Он включает многократные ступенчатые барокамерные подъемы с «площадками» на различных высотах и спуск до «земли». Такие циклы повторяют несколько раз.
• Принципиально новым режимом гипоксической тренировки следует признать барокамерную адаптацию в условиях сна. Факт формирования тренировочного эффекта во время сна имеет важное теоретическое значение. Он заставляет по-новому взглянуть на проблему адаптации, механизмы формирования которой традиционно и не всегда правомерно связываются лишь с активным бодрствующим состоянием организма.
• Использование фармакологических средств предупреждения горной болезни с учетом того, что в ее патогенезе ведущая роль принадлежит нарушениям кислотно-щелочного равновесия в крови и тканях и связанным с ними изменением мембранной проницаемости. Прием лекарственных препаратов, нормализующих кислотно-щелочное равновесие, должен устранять и расстройства сна в гипоксических условиях, тем самым способствуя формированию адаптационного эффекта. Таким препаратом является диакарб из класса ингибиторов карбоангидразы.
• Принцип интервальной гипоксической тренировки при дыхании газовой смесью, содержащей от 10 до 15 % кислорода, используется для увеличения адаптационного потенциала человека и для повышения физических возможностей, а также для лечения различных заболеваний, таких как лучевая болезнь, ишемическая болезнь сердца, стенокардия и т. д.

Читайте также:  Что такое коэффициент упругости напряжение

Источник

Научная электронная библиотека

Сетко Н. П., Сетко А. Г., Булычева Е В., Бейлина Е Б., Сетко И. М.,

2.4. Оценка функциональных резервов и биологической адаптации

В настоящее время является общепризнанным фактом, что функциональное тестирование является обязательной частью методологии оценки здоровья и мониторинга его состояния (Баранов А.А., 2000). Наиболее простыми и удобными для употребления в практике показателями функционального состояния организма являются вегетативные реакции, которые непосредственно включены в адаптационно-трофическую функцию организма и хорошо отражают трудности, с которыми сталкивается ребенок или подросток в процессе жизнедеятельности. Определение вариабельности сердечного ритма (выраженность колебаний частоты сердечных сокращений по отношению к его среднему уровню) признано наиболее информативным неинвазивным методом оценки состояния вегетативной регуляции сердечно-сосудистой системы. Показатели деятельности системы кровообращения – индикатор деятельности всего организма (Баевский Р.М., 1979). Поэтому регистрация и автоматический анализ кардиоритмограмм в покое и при нагрузочных пробах – основная часть функционального мониторинга здоровья на любом этапе индивидуального развития. Примерами автоматической регистрации сердечного ритма и компьютерной обработки полученных результатов являются аппартано-программные комплексы «ORTO Expert» (Игишева Л.Н., Галеев А.Р., 2003), комплекс для обработки кардиоинтервалограмм и анализа вариабельности сердечного ритма «ВариКАРД».

В основе методов диагностики функционального состояния организма лежит представление о том, что сердечно-сосудистая система с ее многоуровневой регуляцией, конечным результатом деятельности которой является обеспечение заданного уровня функционирования целостного организма. Обладая сложными нервно-рефлекторными и нейрогуморальными механизмами, система кровообращения обеспечивает своевременное адекватное кровоснабжение соответствующих структур. При прочих равных условиях можно считать, что любому заданному уровню функционирования целостного организма соответствует эквивалентный уровень функционирования аппарата кровоснабжения (В.В. Парин, 1967). Такая тесная зависимость объясняется с позиций трехуровневой модели управления в организме, предложенной С.Н. Брайнесом и В.Б. Свечинским (1974). Сердечный ритм и процесс управления им вегетативной нервной и гуморальной системами являются важным звеном в адаптации организма к условиям внешней и внутренней среды, что дает возможность использовать характеристики сердечного ритма для оценки функционального состояния организма в целом. Средняя частота сердечных сокращений отражает конечный результат многочисленных регуляторных влияний на аппарат кровообращения, характеризует сложившийся в процессе адаптации гомеостаз. Информация о том, как сложился этот гомеостаз, какая «цена» адаптации, содержится в структуре сердечного ритма, его вариабельности. Основы метода оценки функционального состояния организма сформулировал Р.М. Баевский (1979) в виде концепции о трех, наиболее значимых, компонентах функционального состояния: исходном уровне функционирования, напряжении регуляции, состоянии функциональных резервов. Готовность к определенному виду реакции (фоновая активность регуляторных структур) – это исходный тонус вегетативной нервной системы.

Существуют три типа исходного вегетативного тонуса (три типа нейровегетативной конституции). Их принято обозначать как ваготония, эйтония, симпатикотония. Лица с преобладанием ваготонии (ваготоники) характеризуются медленным развертыванием психофизиологических адаптивных механизмов, стремлением к сохранению старых адаптационных программ, склонностью к астеническим эмоциям, к более редкой частоте сердечных сокращений, гипервентиляции, повышенному тонусу мышечных эффекторов. Лица с преобладанием симпатикотонии склонны к активной смене адаптивных психофизиологических программ, стеническим эмоциям, пульс у них чаще повышен, тонус мышечных эффекторов чаще расслаблен. Лица с эйтонией (промежуточная группа) могут тяготеть как к ваготоникам, так и к симпатикотоникам в зависимости от соотношений симпатического и парасимпатического (ваготонического) компонентов. В популяциях таких индивидуумов большинство.

Функциональное состояние сердечно-сосудистой системы с использованием автоматизированного кардиоритмографического комплекса «ORTO Expert» (Игишева Л.Н., Галеев А.Р., 2003) подразумевает регистрацию сердечного ритма беспроводными электродами. Кардиоритмограммы должны записываться в утренние часы в положении лежа после 6–8 минут отдыха, при переходе в вертикальное положение и стоя. За RR-интервал принимается интервал между последовательными QRS-комплексами электрокардиограммы. Записанные кардиоритмограммы включают не менее 200 последовательных RR-интервалов суммарной продолжительностью не менее 128 секунд. С помощью компьютерной программы рассчитываются показатели временного анализа сердечного ритма:

1. ЧСС (частота сердечных сокращений), или среднее значение RR-интервала, характеризующего средний уровень функционирования сердечно-сосудистой системы.

2. М (математическое ожидание) – показатель, отражающий конечный результат всех регуляторных влияний на сердце и систему кровообращения в целом.

3. Мо (мода) – наиболее часто встречающееся значения R-R интервалов, указывающее на доминирующий уровень функционирования синусового узла.

4. АМо (амплитуда моды) – доля кардиоинтервалов, соответствующая значению моды, т.е. величине наиболее часто встречающегося кардиоинтервала.

5. ?X (вариационный размах) – разность между длительностью наибольшего и наименьшего RR-интервала.

6. SDNN (стандартное отклонение) – величина, равная квадратному корню из дисперсии RR-интервалов, указывающая на суммарный эффект влияния на синусовый узел.

7. RМSSD (квадратный корень средних квадратов разницы между смежными RR-интервалами) – отражающий быстрые высокочастотные колебания в структуре ВСР.

Диагностическим алгоритмом АПК «ORTO-expert» предусмотрено три варианта заключений об исходном вегетативном тонусе:

1. Преобладание парасимпатического отдела ВНС (ваготония).

2. Смешанный тонус ВНС (эйтония).

3. Преобладание симпатического отдела ВНС (симпатикотония).

Степень напряжения оценивается в диагностическом алгоритме программы АПК «ORTO-expert» по соотношению спектральных компонент ВСР (VLF, LF, HF) с учетом исходного вегетативного тонуса. Предусмотрено 12 вариантов степени напряжения систем регуляции.

1. Нормальное состояние систем регуляции.

2. Регуляция с увеличенным влиянием парасимпатического отдела ВНС.

3. Регуляция с увеличенным влиянием симпатического отдела ВНС.

4. Напряжение систем регуляции за счет значительно увеличенного влияния парасимпатического отдела ВНС.

5. Напряжение систем регуляции за счет значительно увеличенного влияния симпатического отдела ВНС.

6. Напряжение систем регуляции за счет рассогласования влияний симпатического и парасимпатического отделов ВНС.

7. Высокое напряжение систем регуляции за счет чрезмерно увеличенного влияния парасимпатического отдела ВНС.

8. Высокое напряжение систем регуляции за счет чрезмерно увеличенного влияния симпатического отдела ВНС.

9. Высокое напряжение систем регуляции за счет значительного рас-согласования влияний симпатического и парасимпатического отделов ВНС.

10. Очень высокое напряжение систем регуляции за счет одновременного снижения тонуса симпатического и парасимпатического отделов ВНС и централизации регуляции.

11. Резкое напряжение систем регуляции за счет значительного одно-временного снижения тонуса симпатического и парасимпатического отделов ВНС и централизации регуляции.

12. Резкое напряжение систем регуляции за счет значительного одно-временного снижения активности всех компонент системы регуляции сердечного ритма.

Функциональные резервы определяются с учетом динамики параметров ВСР при проведении нагрузочной пробы (активной ортостатической пробы). После записи определенного количества кардиоинтервалов подается звуковой сигнал, который означает, что ребенок должен принять вертикальное положение сам без посторонней помощи и стоять до окончания обследования.

При анализе переходного процесса, как правило, выделяют две фазы. Это основано на представлении о неодинаковом участии сердечного и сосудистого компонентов системной гемодинамики на различных стадиях ортостатической пробы. Выделение сердечного и сосудистого компонентов позволяет судить о преимущественной роли первого в начальной фазе ортостатической реакции и об активной роли второго в фазе компенсаторных сдвигов гемодинамики. До настоящего времени не существует единого общепринятого подхода к анализу переходного процесса. В связи с этим был разработан способ анализа переходного процесса, заключающийся в определении объема работы, которая выполняется сердечно-сосудистой
системой в результате адаптивных регуляторных изменений. Программой АПК «ORTO-expert» предусмотрено 5 вариантов заключений о реакции на ортопробу.

Читайте также:  Сгорел блок питания ноутбук напряжение

1. Нормальный переходной процесс. Адекватная реакция сердечно-сосудистой системы на ортопробу.

2. Увеличенная реакция сердечно-сосудистой системы на ортопробу.

3. Значительно увеличенная реакция сердечно-сосудистой системы на ортопробу.

4. Снижение реакции сердечно-сосудистой системы на ортопробу.

5. Реакция сердечно-сосудистой системы на ортопробу не определена.

Кроме того, по согласованности изменений статистических параметров MxDMn и АМо оценивается вегетативное обеспечение, которое может быть каким-нибудь из 5 вариантов:

1. Вегетативное обеспечение организма достаточное.

2. Вегетативное обеспечение организма избыточное.

3. Вегетативное обеспечение чрезвычайно избыточное.

4. Вегетативное обеспечение организма недостаточное.

5. Вегетативное обеспечение организма парадоксальное.

Значимость заключений о каждом из трех компонентов (исходного вегетативного тонуса, степени напряжения регуляторных механизмов и функциональных резервов) при оценке функционального состояния организма была определена эмпирическим путем по клиническим данным длительного наблюдения за пациентами педиатрической клиники и учащимися экспериментальных образовательных учреждений. Общее заключение о функциональном состоянии типизировалось в соответствии с представлениями о типах адаптации.

Кроме того АПК «ORTO-expert» предусмотрено семь вариантов заключений с целью дать расширенные количественные представления о напряжении регуляторных механизмов и функциональных возможностях:

1. Достаточные функциональные возможности организма. Оптимальное функционирование систем регуляции.

2. Состояние минимального напряжения при оптимальном функционировании систем регуляции.

3. Повышенный расход функциональных резервов организма. Незначительное напряжение механизмов адаптации.

НАПРЯЖЕНИЕ МЕХАНИЗМОВ АДАПТАЦИИ

4. Снижение функциональных резервов организма. Умеренное напряжение механизмов адаптации.

5. Выраженное снижение функциональных резервов организма. Значительное напряжение механизмов адаптации.

6. Значительное снижение функциональных возможностей организма. Неудовлетворительная адаптация.

7. Резкое снижение функциональных возможностей организма. Срыв адаптации. Возможно наличие заболевания в субкомпенсированном или декомпенсированном состоянии.

Практический опыт показывает, что основными чертами программно-технического комплекса являются простота эксплуатации, короткое время обследования (5–10 мин), надежность результатов диагностики, легкая применимость результатов в практике школьных врачей, фельдшеров, медицинских сестер. ORTO-Expert позволяет быстро и эффективно сделать заключение о типе вегетативной регуляции и адаптационных резервах сердечно-сосудистой системы и организма в целом.

Особая роль в оценке состояния здоровья детей принадлежит правильному учету всех показателей здоровья и распределения школьников в группы здоровья. Как известно, в основу определения групп здоровья положены 4 критерия (С.М. Громбах, 1973): первый – наличие и отсутствие в момент обследования хронических заболеваний, второй – функциональное состояние основных органов и систем организма, третий – уровень достигнутого развития и степень его гармоничности, степень резистентности организма к неблагоприятным воздействиям среды. Наличие и отсутствие заболеваний определяется при врачебном осмотре с участием специалистов (ЛОР, окулист, хирург и т.д.). Функциональное состояние организма
выявляется клиническим методом с использованием функциональных проб (орто-проба и др.). Степень сопротивляемости организма выявляется по подтвержденным острым заболеваниям (респираторные инфекции) и обострениям хронических болезней за предшествующий осмотру год. В соответствии с предложенным подходом дети и подростки в зависимости от состояния здоровья подразделяются на пять групп:

1. Здоровые дети с нормальным развитием и нормальным развитием функций.

2. Здоровые, но имеющие функциональные и некоторые морфологические отклонения, а также сниженную сопротивляемость к острым и хроническим заболеваниям.

3. Больные с хроническими заболеваниями в состоянии компенсации с сохраненными функциональными возможностями организма.

4. Больные с хроническими заболеваниями в состоянии субкомпенсации со сниженными функциональными возможностями организма.

5. Больные хроническими заболеваниями в состоянии декомпенсации со значительно сниженными функциональными возможностями организма. Как правило, дети этой группы инвалиды.

В практической деятельности медицинских работников школы и территориального лечебно-профилактического учреждения зачастую опускается оценка функционального состояния, поскольку предлагаемые нагрузочные пробы (Мартине – Кушелевского, ортоклиностатическая и др.) трудоемки в проведении и оценки результатов. Использование комплекса ORTO позволяет получить результат в течение нескольких минут.

В результате ритмографического обследования школьники распределяются на следующие подгруппы в зависимости от функционального состояния их организма:

1) дети с достаточным или высоким функциональным резервом;

2) дети с незначительным ухудшением функционального состояния, за этими детьми необходимо вести динамическое наблюдение (в нашей практике учащиеся обследуются в каждой учебной четверти), и при наличии неблагоприятных изменений эта группа детей нуждается в подходе, используемом при работе с группами 3 и 4;

3) дети с выраженным ухудшением функционального состояния;

4) дети с резким ухудшением функционального состояния, срывом адаптации.

При осмотре школьный педиатр, имея уже экспресс-информацию об исходном вегетативном тонусе и адаптационных возможностях, находит объяснение, почему имеет место напряжение (дети 3–4 групп) или направляет ребенка на обследование для выяснения возможных причин выявленных нарушений. Таким образом, дальнейшая тактика определяется осмотром врача.

а) Если у школьника диагностирована удовлетворительная адаптация, то он получает комплекс общих профилактических и оздоровительных процедур, и с ним ведется работа по повышению уровня культуры здоровья.

б) Если состояние ребенка расценено как предболезненное и выявлены факторы риска развития определенной патологии, то предлагается соответствующий комплекс мероприятий для коррекции состояния и профилактики возможных заболеваний.

в) Если причина нарушений остается неясной или требует подтверждения с помощью дополнительного обследования, то родителям ребенка рекомендуется обратиться в лечебно-профилактическое учреждение для обследования и лечения.

г) При наличии хронических заболеваний выявленные нарушения расцениваются как проявление декомпенсации и предлагается определенная программа реабилитации.

Необходимо подчеркнуть важность информации, полученной с помощью комплекса ORTO, для комплексной оценки состояния здоровья. Так, известно, что выраженная симпатикотония с чрезмерным включением центрального контура регуляции при проведении ортопробы по данным ритмо-графии в сочетании с психо-эмоциональным напряжением являются ранними признаками гипертонической болезни (Игишева Л.Н., 1996); нарушение сердечного ритма с тенденцией к брадикардии, снижение показателей памяти, внимания, умственной работоспособности могут быть первыми признаками дисбаланса тиреоидной функции, сочетание ваготонии с высокой вегетативной реактивностью и признаками психоэмоционального напряжения может отражать вегетативный дисбаланс при заболеваниях желудочно-кишечного тракта.

Комплекс для обработки кардиоинтервалограмм и анализа вариабельности сердечного ритма «ВариКАРД» (в дальнейшем – комплекс) предназначен для использования в научно-исследовательской и практической работе для оценки состояния вегетативной регуляции, степени напряжения регуляторных систем и состояния различных звеньев управления системой кровообращения. Это позволяет диагностировать ранние проявления изменений механизмов регуляции, которые предшествуют энергетическим и метаболическим нарушениям и, таким образом, имеют прогностическое значение.

Комплекс «ВариКАРД» реализует современную технологию анализа вариабельности сердечного ритма применительно к исследованиям продолжительностью от нескольких минут до нескольких часов и соответствует по своим техническим характеристикам и методическим подходам, принятым как в России, так и за рубежом. Комплексы «ВариКАРД» могут использоваться для получения новой, более точной информации о состоянии системы регуляции сердечного ритма.

Варикард реализует технологию выявления состояний, предшествующих развитию болезни. Технология предназначена не для определения нозологических форм, а для оценки неспецифических механизмов адаптации и риска развития заболеваний практически здоровых людей и лиц, с начальными формами патологии и выдачи заключения об уровне адаптационных возможностей организма и степени напряжения регуляторных систем (табл. 4). Обнаружение состояния, предшествующего развитию патологического процесса во многих случаях позволяет предупредить его возникновение.

Комплекс «ВариКАРД» обеспечивает регистрацию ЭКС и синхронно КИГ (с отображением их на экране монитора в режиме реального времени) для пациентов, не имеющих встроенного кардиостимулятора. Исследование системы регуляции сердечного ритма осуществляется в следующей последовательности:

1. Открытие или создание базы данных (БД). По умолчанию открыта база данных предшествующего сеанса,

2. Открытие или создание картотеки. По умолчанию открыта картотека предшествующего сеанса.

3. Создание карты пациента. При повторных обследованиях карта пациента выбирается из списка.

4. Съем, отображение на экране монитора и запись в БД электро-кардиосигнала (ЭКС) в одном из трех стандартных отведений в течение заданного врачом времени (от 5 минут до 24 часов);

5. Выделение из ЭКС кардиоинтервалограммы (КИГ) и отображение ее на экране монитора;

6. Корректировка КИГ. Корректировка включает в себя визуальный просмотр сохраненных в памяти ЭВМ КИГ и ЭКС с целью редактирования ошибочных отметок R зубцов и выделения экстрасистол. Редактирование осуществляется в интерактивном графическом режиме;

7. Выделение 5-минутных фрагментов КИГ и их математический анализ.

Соотношение функциональных состояний организма
с уровнем напряжения регуляторных систем

Источник