I. РАСЧЕТ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ
бесплатной онлайн библиотеке «КнигаГо.ру»
Http://knigago.ru
I. РАСЧЕТ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ
Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (обычно менее 50 кГц). В качестве выпрямительных используют плоскостные диоды, допускающие благодаря значительной площади контакта большой выпрямленный ток. Вольт-амперная характеристика диода выражает зависимость тока, протекающего через диод, от значения и полярности приложенного к нему напряжения (рис.1.1). Ветвь, расположенная в первом квадранте, соответствует прямому (пропускному) направлению тока, а расположенная в третьем квадранте обратному направлению тока.
Чем круче и ближе к вертикальной оси прямая ветвь, и ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. При достаточно большом обратном напряжении у диода наступает пробой, т.е. резко возрастает обратный ток. Нормальная работа диода в качестве элемента с односторонней проводимостью возможна лишь в режимах, когда обратное напряжение не превышает пробивного.
Токи диодов зависят от температуры (см. рис.1.1). Если через диод протекает постоянный ток, то при изменении температуры падение напряжения на диоде изменяется приблизительно на 2 мВ/°С. При увеличении температуры обратный ток увеличивается в два раза у германиевых и в 2,5 раза у кремниевых диодов на каждые 10°С. Пробивное напряжение при повышении температуры понижается.
Высокочастотные диоды — приборы универсального назначения: для выпрямления токов в широком диапазоне частот (до нескольких сотен МГц), для модуляции, детектирования и других нелинейных преобразований. В качестве высокочастотных в основном используются точечные диоды. Высокочастотные диоды имеют те же свойства, что и выпрямительные, но диапазон их рабочих частот гораздо шире.
Unp — постоянное прямое напряжение при заданном постоянном прямом токе;
Uобр — постоянное обратное напряжение, приложенное к диоду в обратном направлении;
Iпp — постоянный прямой ток, протекающий через диод в прямом направлении;
Iобр — постоянный обратный ток, протекающий через диод в обратном направлении при заданном обратном напряжении;
Unp.oбр— значение обратного напряжения, вызывающего пробой перехода диода;
Inp.cp— средний прямой ток, среднее за период значение прямого тока диода;
Iвп.ср- средний выпрямительный ток, среднее за период значение выпрямленного тока, протекающего через диод (с учетом обратного тока);
Ioбр.cp— средний обратный ток, среднее за период значение обратного тока;
Рпр — прямая рассеиваемая мощность, значение мощности, рассеиваемой диодом при протекании прямого тока;
Pср — средняя рассеиваемая мощность диода, среднее за период значение мощности, рассеиваемой диодом при протекании прямого и обратного тока;
Rдиф — дифференциальное сопротивление диода, отношение малого приращения напряжения диода к малому приращению тока на нем при заданном режиме
(1.1)
Rnp.д. — прямое сопротивление диода по постоянному току, значение сопротивления диода, полученное как частное от деления постоянного прямого напряжения на диоде и соответствующего прямого тока
(1.2)
Rобр.д — обратное сопротивление диода; значение сопротивления диода, полученное как частное от деления постоянного обратного напряжения на диоде и соответствующего постоянного обратного тока
(1.3)
Максимально допустимые параметры определяют границы эксплуатационных режимов, при которых диод может работать с заданной вероятностью в течение установленного срока службы. К ним относятся: максимально допустимое постоянное обратное напряжение Uобр.max; максимально допустимый прямой ток Iпр.max, максимально допустимый средний прямой ток Iпр.ср.max, максимально допустимый средний выпрямленный токIвп.ср.max, максимально допустимая средняя рассеиваемая мощность диода Рср.max.
Указанные параметры приводятся в справочной литературе. Кроме того, их можно определить экспериментально и по вольт-амперным характеристикам.
Рассмотрим пример (рис. 1.2). Рассчитать и сравнить Rдиф, Rпр.д для диода ГД107 при Iпр= 12 мА.
Дифференциальное сопротивление находим как котангенс угла наклона касательной, проведенной к прямой ветви ВАХ в точке Iпр= 12 мА (Rдиф
(1.4)
Прямое сопротивление диода находим как отношение постоянного напряжения на диоде Uпр=0,6В к соответствующему постоянному току Iпр=12мА на прямой ветви ВАХ.
(1.5)
Видим, что Rдиф >Rпр.д, что говорит об односторонней проводимости диода. Вывод об односторонней проводимости можно сделать и непосредственно из анализа ВАХ: прямой ток Iпp
мА при Uпр
Uст — напряжение стабилизации, напряжение на стабилитроне при протекании номинального тока;
∆Uст.ном — разброс номинального значения напряжения стабилизации, отклонение напряжения на стабилитроне от номинального значения;
Rдиф.ст — дифференциальное сопротивление стабилитрона, отношение приращения напряжения стабилизации на стабилитроне к вызвавшему его малому приращению тока в заданном диапазоне частот;
αСТ — температурный коэффициент напряжения стабилизации, отношение относительного изменения напряжения стабилизации к абсолютному изменению температуры окружающей среды при постоянном токе стабилизации.
Максимально допустимые параметры. К ним относятся: максимальный Iст.max, минимальный Iст.min токи стабилизации, максимально допустимый прямой ток Imax, максимально допустимая рассеиваемая мощность Pmax.
Принцип работы простейшего полупроводникового стабилизатора напряжения (рис.1.5) основан на использовании нелинейности вольт-амперной характеристики стабилитронов (см. рис.1.3).Простейший полупроводниковый стабилизатор представляет собой делитель напряжения, состоящий из ограничительного резистора Rогр и кремниевого стабилитрона VD. Нагрузка Rн подключается к стабилитрону,
В этом случае напряжение на нагрузке равно напряжению на стабилитроне
а входное напряжение распределяется между Rогр и VD
Ток через Rогр согласно первому закону Кирхгофа равен сумме токов нагрузки и стабилитрона
Величина Rогр выбирается таким образом, чтобы ток через стабилитрон был равен номинальному, т.е. соответствовал середине рабочего участка.
| | следующая лекция ==> | |
Власть несбывшегося 21 страница | | | Передатчик 3Вт |
Дата добавления: 2014-12-06 ; просмотров: 32473 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Что такое ВАХ диода, типы диодов
Сегодня диоды можно встретить практически в любом бытовом приборе. Многие даже собирают некоторые устройства в своей домашней лаборатории. Но, чтобы правильно использовать эти элементы электросхемы, нужно знать, что собой представляет ВАХ диода. Именно этой характеристики и будет посвящена данная статья.
Что это такое
ВАХ расшифровывается как вольт-амперная характеристика диодного полупроводника. Она отражает зависимость тока, который проходит через p-n переход диода. ВАХ определяет зависимость тока от величины, а также полярности приложенного напряжения. Вольт-амперная характеристика имеет вид графика (схема). Данный график имеет следующий вид:
Для каждого вида диода график ВАХ будет иметь свой конкретный вид. Как видим, график содержит кривую. По вертикали вверху здесь отмечены значения прямого тока (прямом включении), а внизу – в обратном. Но горизонтали схема и график отображают напряжение, аналогично в прямом и обратном направлении. Таким образом схема вольт-амперной характеристики будет состоять из двух частей:
- верхняя и правая часть – элемент функционирует в прямом направлении. Она отражает пропускной ток. Линия в этой части идет резко вверх. Она характеризует значительный рост прямого напряжения;
- нижняя левая часть – элемент действует в обратном направлении. Она соответствует закрытому (обратному) току через переход. Здесь линия идет практически параллельно горизонтальной оси. Она отражает медленное нарастание обратного тока.
Обратите внимание! Чем круче будет вертикальная верхняя часть графика, и ближе к горизонтальной оси нижняя линия, тем более лучше будут выпрямительные свойства полупроводника.
Стоит отметить, что ВАХ сильно зависит от температуры окружающей среды. К примеру, повышение температуры воздуха может привести резкому повышению обратного тока.
Построить своими руками ВАХ можно следующим образом:
- берем блок питания;
- подключаем его к любому диоду (минус на катод, а плюс на анод);
- с помощью мультиметром делаем замеры.
Из полученных данных и строится вольт-амперная характеристика для конкретного элемента. Ее схема или график могут иметь следующий вид.
На графике видна ВАХ, которая в таком исполнении называется нелинейной.
Рассмотрим на примерах различных типов полупроводников. Для каждого отдельного случая данная характеристика буде иметь свой график, хотя они все будут носить единый характер лишь с небольшими изменениями.
ВАХ для шотки
Одним из наиболее распространенных диодов на сегодняшний день является шоттки. Этот полупроводник был назван в честь физика из Германии Вальтера Шоттки. Для шоттки вольт-амперная характеристика будет иметь следующий вид.
Как видим, для шоттки характерно малое падение напряжения в ситуации прямого подключения. Сам график носит явный ассиметричный характер. В зоне прямых смещений наблюдается экспоненциальное увеличение тока и напряжения. При обратном и прямом смещении для данного элемента ток в барьере обусловлен электронами. В результате этого такие элементы характеризуется быстрым действием, поскольку у нет диффузных и рекомбинационных процессов. При этом несимметричность ВАХ будет типичной для структур барьерного типа. Здесь зависимость тока от напряжения определена изменением количества носителей, которые берут участие в зарядопереносных процессах.
Кремниевый диод и его ВАХ
Кроме шоттки, большой популярностью на данный момент пользуются кремниевые полупроводники. Для кремниевого типа диода вольт-амперная характеристика выгляди следующим образом.
ВАХ кремниевого и германиевого диода
Для таких полупроводников данная характеристика начинается примерно со значения 0,5-0,7 Вольт. Очень часто кремниевые полупроводники сравнивают с германиевыми. Если температуры окружающей среды равны, то оба устройства будут демонстрировать ширину запрещённой зоны. При этом кремниевый элемент будут иметь меньший прямой ток, чем из германия. Это же правило касается и обратного тока. Поэтому у германиевых полупроводников обычно сразу наступает тепловой пробой, если имеются обратное большое напряжение.
В итоге, при наличии одинаковой температуры и прямого напряжения, потенциальный барьер у кремниевых полупроводников будет выше, а ток инжекции ниже.
ВАХ и выпрямительный диод
В завершении хотелось бы рассмотреть данную характеристику для выпрямительного диода. Выпрямительный диод – одна из разновидностей полупроводника, который применятся для преобразования переменного в постоянный ток.
ВАХ для выпрямительного диода
На схеме показана экспериментальная ВАХ и теоретическая (пунктирная линия). Как видим, они не совпадают. Причина этого кроется в том, для теоретических расчетов не учитывались некоторые факторы:
- наличие омического сопротивления базовой и эмиттерной областей у кристалла;
- его выводов и контактов;
- наличие возможности токов утечки по кристальной поверхности;
- протекание процессов рекомбинации и генерации в переходе для носителей;
- различные типы пробоев и т. д.
Все эти факторы могут оказывать различное влияние, приводя к отливающейся от теоретической реальной вольт-амперной характеристики. Причем значительное влияние на внешний вид графика в данной ситуации оказывает температура окружающей среды.
ВАХ для выпрямительного диода демонстрирует высокую проводимость устройства в момент приложения к нему напряжения в прямом направлении. В обратном же направлении наблюдается низкая проводимость. В такой ситуации ток через элемент практически не течет в обратном направлении. Но это происходит только при определенных параметрах обратного напряжения. Если его превысить, то на графике видно лавинообразное повышение тока в обратном направлении.
Заключение
Вольт-амперная характеристика для диодных элементов считается важным параметром, отражающем специфику проведения тока в обратном и прямом направлениях. Она определяется в зависимости от напряжения и температуры окружающей среды.
Источник
Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.
Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.
Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.
По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.
Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.
Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.
На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:
Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.
Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.
На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:
1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.
Прямое включение диода. Прямой ток.
Если к электродам диода подключить источник постоянного напряжения: на вывод анода « плюс» а на вывод катода « минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.
При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.
Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.
Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.
Обратное включение диода. Обратный ток.
Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.
В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.
Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода ( Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.
Прямое и обратное напряжение диода.
Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).
При прямом напряжении ( Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении ( Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.
Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения ( Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.
Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.
Вольт-амперная характеристика полупроводникового диода.
Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.
На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока ( Iпр), а в нижней части — обратного тока ( Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения ( Uобр).
Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.
Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода ( Iпр) в сотни раз больше обратного тока ( Iобр).
При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.
Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка « а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка « б» на графике).
Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения ( радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.
У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.
При увеличении обратного напряжения ( Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:
Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.
При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка « в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.
Пробои p-n перехода.
Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.
Электрический пробой.
Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.
Туннельный пробой.
Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.
В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).
Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.
Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.
Лавинный пробой.
Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.
Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.
Тепловой пробой.
Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.
При увеличении приложенного к p-n переходу обратного напряжения ( Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.
На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!
1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
Источник