Меню

Формула мощности электрического тока во внешней цепи

Работа и мощность электрического тока в цепи

Во время протекания тока по однородному участку цепи электрическое поле совершает работу. За пройденное время Δ t по цепи имеется заряд Δ q = I Δ t .

Электрическое поле выделенного участка выполняет работу, формулу которой мы запишем так: Δ A = ( φ 1 – φ 2 ) Δ q = Δ φ 12 I Δ t = U I Δ t , где U = Δ φ 12 – напряжение. Такая величина называется работой электрического тока.

Обе части формулы R I = U выражают закон Ома для однородного участка цепи с сопротивлением R , умноженным на I Δ t . В итоге получим соотношение R I 2 Δ t = U I Δ t = Δ A , выражающее закон сохранения энергии для однородного участка цепи. Работа Δ A электрического тока I , протекающего по неподвижному проводнику с сопротивлением R , преобразуется в тепло Δ Q , выделяющееся на проводнике. Δ Q = Δ A = R I 2 Δ t .

Закон Джоуля-Ленца

Дж. Джоуль и Э. Ленц установили закон преобразования работы тока в тепло.

Формула мощности электрического тока (измеряется в амперах) записывается в виде отношения изменения работы тока Δ A за определенный промежуток времени Δ t :

P = ∆ A ∆ t = U I = I 2 R = U 2 R .

Работа и мощность электрического тока обратно пропорциональны.

По таблице С И понятно, в чем измеряется мощность: в ваттах ( В Т ) , а работа в Джоулях ( Д ж ) .

Перейдем к рассмотрению полной цепи постоянного тока, которая состоит из источника с электродвижущей силой ε и внутренним сопротивлением r на участке R . Запись основного закона Ома для полной цепи имеет вид ( R + r ) I = ε . При умножении обеих частей на Δ q = I Δ t получаем, что соотношение для выражения сохранения энергии полной цепи постоянного тока запишется: R I 2 Δ t + r I 2 Δ t = ε I Δ t = Δ A с т . Из левой части видно, что Δ Q = R I 2 Δ t обозначает выделяющееся тепло на внешнем участке за промежуток времени Δ t , а Δ Q и с т = r I 2 Δ t внутри источника за тот же время.

ε I Δ t – это обозначение работы сторонних сил Δ A с т , действующих внутри. Если имеется замкнутая цепь, тогда Δ A с т переходит в тепло, которое выделяется во внешней цепи ( Δ Q ) и внутри источника ( Δ Q и с т ) .

Δ Q + Δ Q и с т = Δ A с т = ε I Δ t .

Работа сторонних сил

Работа электрического поля не входит в данное соотношение, так как в замкнутой цепи работа не совершается, следовательно, тепло идет только от внутренних сторонних сил. В данном случае электрическое поле перераспределяет тепло по всем участкам цепи.

Внешняя цепь может иметь не только проводник с R сопротивлением, но и механизм, потребляющий мощность. Такой случай говорит о том, что R эквивалентно сопротивлению нагрузки. Энергия, которая выделяется по внешней цепи, преобразуется в тепло и другие виды энергии.

Работа, совершаемая сторонними силами за единицу времени, равняется P и с т = ε I = ε 2 R + r . Внешняя цепь характеризуется мощностью P = R I 2 = ε I — r I 2 = ε 2 R ( R + r ) 2 .

Коэффициентом полезного источника называют отношение η = P P и с т , записываемое как η = P P и с т = 1 — r ε I = R R + r .

Рисунок 1 . 11 . 1 показывает зависимость P и с т , полезной Р , выделяемой во внешней цепи, кпд η от тока I для источника с ЭДС, равной ε , и внутренним сопротивлением r . Изменение тока в цепи происходит в пределах от I = 0 ( при R = ∞ ) до I = I к з = ε r ( при R = 0 ).

Рисунок 1 . 11 . 1 . Зависимость мощности источника P и с т , мощности во внешней цепи Р и КПД источника η от силы тока.

Приведенные графики показывают, что максимальная мощность во внешней цепи может быть достигнута при R = r и запишется P m a x = ε 2 4 r . Формула тока в цепи будет иметь вид I m a x = 1 2 I к з = ε 2 r , где КПД источника не превышает 50 % . При I → 0 может достигаться максимальное значение КПД, тогда сопротивление R → ∞ . При коротком замыкании значение мощности Р = 0 . Тогда она только выделяется внутри источника, что грозит перегревом, причем КПД обращается в ноль.

Источник

Как рассчитать мощность электрического тока?

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

Читайте также:  Электролитическое действие тока это

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U 2 /R

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I 2 *R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Суммарная мощность

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Треугольник мощностей

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Мощность и линейное напряжение

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Шильд электродвигателя

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Последовательная расчетная цепь

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U 2 /R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Параллельная схема подключения

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I 2 *R = 25*6 = 150 Вт

Видео по теме

Источник



Формула мощности электрического тока во внешней цепи

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца .

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением и внешнего однородного участка с сопротивлением . Закон Ома для полной цепи записывается в виде

( + ) = .

Умножив обе части этой формулы на Δ = Δ, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

2 Δ + 2 Δ = Δ = Δст.

Первый член в левой части Δ = 2 Δ – тепло, выделяющееся на внешнем участке цепи за время Δ, второй член Δист = 2 Δ – тепло, выделяющееся внутри источника за то же время.

Выражение Δ равно работе сторонних сил Δст, действующих внутри источника.

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами , действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Читайте также:  Бьющее током оружие 5 букв

Внешняя цепь может представлять собой не только проводник с сопротивлением , но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под нужно понимать эквивалентное сопротивление нагрузки . Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

На рис. 1.11.1 графически представлены зависимости мощности источника ист, полезной мощности , выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи для источника с ЭДС, равной , и внутренним сопротивлением . Ток в цепи может изменяться в пределах от = 0 (при ) до (при = 0).

Источник

ДОМОСТРОЙСантехника и строительство

  • Четверг, 12 декабря 2019 1:08
  • Автор: Sereg985
  • Прокоментировать
  • Рубрика: Строительство
  • Ссылка на пост
  • https://firmmy.ru/

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = IΔt. Электрическое поле на выделенном участке совершает работу

ΔA = (φ1 – φ2)Δq = Δφ12IΔt = UIΔt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.

Если обе части формулы

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение

RI 2 Δt = UIΔt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

ΔQ = ΔA = RI 2 Δt.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде

(R + r)I = ε.

Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

RI 2 Δt + rI 2 Δt = IΔt = ΔAст.

Первый член в левой части ΔQ = RI 2 Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = rI 2 Δt – тепло, выделяющееся внутри источника за то же время.

Выражение IΔt равно работе сторонних сил ΔAст, действующих внутри источника.

При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).

ΔQ + ΔQист = ΔAст = IΔt

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, на и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна

Во внешней цепи выделяется мощность

Отношение равное

называетсякоэффициентом полезного действия источника.

На рис. 1.4.13 графически представлены зависимости мощности источника Pист , полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной , и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при ) до (при R = 0).

Рисунок 1.4.13 Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока.

Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax , равная

достигается при R = r. При этом ток в цепи

а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, то есть при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ:

Соберите на экране цепь, показанную на рис. 2. Для этого сначала щелкните левой кнопкой мыши над кнопкой э.д.с. в нижней части экрана. Переместите маркер мыши на рабочую часть экрана, где расположены точки. Щелкните левой кнопкой мыши в рабочей части экрана, где будет расположен источник э.д.с.

Разместите далее последовательно с источником резистор, изображающий его внутреннее сопротивление (нажав предварительно кнопку в нижней части экрана) и амперметр (кнопка там же). Затем расположите аналогичным образом резисторы нагрузки и вольтметр , измеряющий напряжение на нагрузке.

Подключите соединительные провода. Для этого нажмите кнопку провода внизу экрана, после чего переместите маркер мыши в рабочую зону схемы. Щелкайте левой кнопкой мыши в местах рабочей зоны экрана, где должны находиться соединительные провода.

4. Установите значения параметров для каждого элемента. Для этого щелкните левой кнопкой мыши на кнопке со стрелкой . Затем щелкните на данном элементе. Подведите маркер мыши к движку появившегося регулятора, нажмите на левую кнопку мыши и, удерживая ее в нажатом состоянии, меняйте величину параметра и установите числовое значение, обозначенное в таблице 1 для вашей бригады.

Читайте также:  Свечи накаливания характеристики ток

Таблица 1. Исходные параметры электрической цепи

Номер бригады
Е, В 10,0 9,5 9,0 8,5 8,0 8,5 9,0 9,5
r, Ом 4,8 5,7 6,6 7,5 6,4 7,3 8,2 9,1

5. Установите сопротивление внешней цепи 2 Ом, нажмите кнопку «Счёт» и запишите показания электроизмерительных приборов в соответствующие строки таблицы 2.

6. Последовательно увеличивайте с помощью движка регулятора сопротивление внешней цепи на 0,5 Ом от 2 Ом до 20 Ом и, нажимая кнопку «Счёт», записывайте показания электроизмерительных приборов в таблицу 2.

7. Вычислите по формулам .

.

= I 2 (R+r) = IE

. (9)

Р1, Р2, Рполн и h для каждой пары показаний вольтметра и амперметра и запишите рассчитанные значения в табл.2.

8. Постройте на одном листе миллиметровой бумаге графики зависимости P1 = f(R), P2 = f(R), Pполн=f(R), h = f (R) и U = f(R).

9. Рассчитайте погрешности измерений и сделайте выводы по результатам проведённых опытов.

Таблица 2. Результаты измерений и расчётов

R, Ом 2,0 2,5 3,0
U, В
I, А
P1, Вт
P2, ВТ
Pполн, ВТ
h

Вопросы и задания для самоконтроля

1. Запишите закон Джоуля-Ленца в интегральной и дифференциальной формах.

2. Что такое ток короткого замыкания?

3. Что такое полная мощность?

4. Как вычисляется к.п.д. источника тока?

5. Докажите, что наибольшая полезная мощность выделяется при равенстве внешнего и внутреннего сопротивлений цепи.

6. Верно ли утверждение, что мощность, выделяемая во внутренней части цепи, постоянна для данного источника?

7. К зажимам батарейки карманного фонаря присоединили вольтметр, который показал 3,5 В.

8. Затем вольтметр отсоединили и на его место подключили лампу, на цоколе которой было написано: Р=30 Вт, U=3,5 В. Лампа не горела.

9. Объясните явление.

10.При поочерёдном замыкании аккумулятора на сопротивления R1 и R2 в них за одно и то же время выделилось равное количество тепла. Определите внутреннее сопротивление аккумулятора.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8815 — | 7171 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

07.06.2019

5 июня Что порешать по физике

30 мая Решения вчерашних ЕГЭ по математике

Неразветвлённая электрическая цепь состоит из источника постоянного тока и внешнего сопротивления. Как изменятся при уменьшении внутреннего сопротивления источника следующие величины: сила тока во внешней цепи; мощность, выделяющаяся на внешнем сопротивлении, и электродвижущая сила источника?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины.

Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА ЕЁ ИЗМЕНЕНИЕ

А) Сила тока во внешней цепи

Б) Мощность, выделяющаяся на внешнем сопротивлении

В) Электродвижущая сила источника

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А) По закону Ома сила тока в цепи где — сопротивление внешней цепи, — сопротивление источника тока. Из формулы видно, что при уменьшении внутреннего сопротивления источника тока, сила тока в цепи возрастёт.

Б) Мощность, выделяющаяся на внешнем сопротивлении При уменьшении внутреннего сопротивления источника тока мощность выделяющаяся на внешнем сопротивлении возрастает.

В) ЭДС источника не зависит от его внутреннего сопротивления.

Тестирование онлайн

Закон Ома для замкнутой цепи

Замкнутая (полная) электрическая цепь состоит из источника тока и сопротивления.

Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним. ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r.

1) Напряжение на зажимах источника, а соответственно и во внешней цепи

,
где величина падение напряжения внутри источника тока.

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Коэффициент полезного действия

Мощность, выделяемая на внешнем участке цепи, называется полезной

При условии R=r мощность, выделяемая во внешней цепи, максимальная для данного источника и равна

Полная мощность — сумма полезной и теряемой мощности

Коэффициент полезного действия источника тока — отношение полезной мощности к полной

Источник ЭДС

Для существования постоянного тока в цепи необходимо непрерывно разделять электрические заряды, которые под действием сил Кулона стремятся соединиться. Для этого необходимы сторонние силы. ЭДС характеризует действие этих сторонних сил. А сама эта работа осуществляется внутри источников ЭДС. Электрические заряды внутри источников ЭДС движутся против кулоновских сил под воздействием сторонних сил.

Сравнивая электрический ток с течением жидкости в трубах, можно сказать, что источник работает, как насос, который подает воду из нижнего резервуара в верхний, из которого она под действием силы тяжести стекает в нижний резервуар.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока из-за наличия внутреннего сопротивления.

В настоящее время выпускают множество различных источников ЭДС — от маленьких батареек для часов до генераторов.

Внутри источника тока происходит разделение зарядов из-за процессов, происходящих внутри источника, например, химических процессов.

Гальванический элемент — химический источник тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите (батарейки, аккумуляторы).

Генераторы — создают ток за счет расходования механической энергии.

Термоэлементы — используют энергию теплового движения заряженных частиц.

Фотоэлементы — создают ток за счет энергии света.

Соединение источников тока*

Рассмотрим n одинаковых источников ЭДС

Правила Кирхгофа**

Для расчета сложных разветвленных цепей, которые нельзя свести к эквивалентной цепи, используют правила Кирхгофа:

1) Алгебраическая сумма сил токов, сходящихся в узле равна нулю.

2) Алгебраическая сумма падений напряжений в любом простом замкнутом контуре равна алгебраической сумме ЭДС, которые есть в этом контуре.

Источник

Формула мощности электрического тока во внешней цепи



Формула мощности электрического тока во внешней цепи

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца .

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением и внешнего однородного участка с сопротивлением . Закон Ома для полной цепи записывается в виде

( + ) = .

Умножив обе части этой формулы на Δ = Δ, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

2 Δ + 2 Δ = Δ = Δст.

Первый член в левой части Δ = 2 Δ – тепло, выделяющееся на внешнем участке цепи за время Δ, второй член Δист = 2 Δ – тепло, выделяющееся внутри источника за то же время.

Выражение Δ равно работе сторонних сил Δст, действующих внутри источника.

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами , действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Внешняя цепь может представлять собой не только проводник с сопротивлением , но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под нужно понимать эквивалентное сопротивление нагрузки . Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

На рис. 1.11.1 графически представлены зависимости мощности источника ист, полезной мощности , выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи для источника с ЭДС, равной , и внутренним сопротивлением . Ток в цепи может изменяться в пределах от = 0 (при ) до (при = 0).

Читайте также:  Для чего изучают электрический ток

Источник

Как рассчитать мощность электрического тока?

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Читайте также:  Параметры переменного тока в россии

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

после того как выражение подставить в формулу мощности, получим:

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.
Читайте также:  Основные носители тока в металлах кто доказал

Также составляющие вычисляются через тригонометрические функции, так:

Источник

Исследование зависимости мощности и КПД источника тока от внешней нагрузки

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

Из формулы (2) видно, что при коротком замыкании цепи (R®0) и при R® эта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:

Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

Следовательно, полная мощность, выделяемая во всей цепи , определится формулой

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

т.е. Р1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи ( R>> r ), второе – короткому замыканию ( R Будет полезно почитать по теме:

Источник