Меню

Формула касательных напряжений при растяжении



Растяжение-сжатие.

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

Читайте также:  Защита первичной обмотки трансформатора напряжения

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε ‘ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε ‘ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно . В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность , пластичность , хрупкость , упругость и твердость .

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l и начальным постоянным поперечным сечением площади A статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l абсолютное удлинение стержня; ε = Δl / l — относительное продольное удлинение стержня; σ = F / A — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

Читайте также:  Стабилизатор напряжения для инверторного холодильника как выбрать

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Напряжения при растяжении и сжатии

При растяжении и сжатии в сечении действует только нормаль­ное напряжение.

Напряжения в поперечных сечениях могут рассматриваться как силы, приходящиеся на единицу площади.

Таким образом, направление и знак напряжения в сечении со­впадают с направлением и знаком силы в сечении .

Исходя из гипотезы плоских сечений, можно предположить, что напряжения при растяжении и сжатии в пределах каждого сечения не меняются. По­этому напряжение можно рассчитать по формуле

где Nz —продольная сила в сечении; А — площадь поперечного сечения. Величина напряжения прямо пропорциональна продольной силе и обратно пропорциональна площади поперечного сечения.

Нормальные напряжения действуют при растяжении от сечения (рис. 4.11, а), а при сжатии к сечению (рис. 4.11, б)

Размерность (единица измерения) напряжений — Н/м 2 (Па), од­нако это слишком малая единица, и практически напряжения рас­считывают в Н/мм 2 (МПа): 1 МПа = 10 6 Па = 1 Н/мм 2 .

При определении напряже­ний брус разбивают на участки (напряжений, в пределах которых продольные силы не изменяются, и учитывают места изменений площади поперечных сечений.

Рассчитывают напряжения по сечениям, и расчет оформляют в виде эпюры нормальных напряжений.

Строится и оформляется такая эпюра так же, как и эпюра про­дольных сил.

Читайте также:  Для тушения электроустановок находящихся под напряжением применяют огнетушители тест

Рассмотрим брус, нагру­женный внешними силами вдоль оси (рис. 4.12).

Обнаруживаем три уча­стка нагружения и определя­ем величины продольных сил.

Участок 1: N1 = 0. Внутренние продольные силы равны нулю.

Участок2: N2 = 2F. Про­дольная сила на участке поло­жительна.

Участок 3: N3 = 2F—3F = —F. Продольная сила на участке отрицательна.

С учетом изменений ве­личин площади поперечного сечения участков напряжений больше.

Строим эпюры продольных сили нормальных напряжений.

Масштабы эпюр могут быть разными и выбираются исходя из удобства построения.

Источник

Напряжения в наклонных сечениях

Мы умеем определять нормальные напряжения,возникающие в опасном сечении (поперечном) стержня. Но можем ли мы утверждать, что эти нормальные напряжения самые большие и именно их значения следует использовать для оценки прочности стержня? Касательные напряжения в поперечном сечении не возникают, но возникают ли касательные напряжения в наклонных сечениях?

Необходимо научиться определять напряжения на любых площадках, проходящих через некоторую точку К тела и находить площадки, на которых нормальные и касательные напряжения достигают наибольших значений.

Напряжения в наклонных площадках наблюдаются, если мысленно «разрезать» стержень, растягиваемый силами P, наклонной плоскостью под углом к поперечному сечению (рис. 2.2, а), проходящей через точку K, и отбросить правую часть.

Внешняя нормаль к наклонному сечению будет составлять с осью угол . Действие отброшенной правой части стержня на левую часть заменим внутренними усилиями (рис. 2.2, б). Чтобы левая часть стержня находилась в равновесии, в каждой точке наклонного сечения стержня должно возникнуть продольное противодействующее усилие. Равнодействующая внутренних усилий N равна внешней силе P.

Допустим, внутренние усилия равномерно распределены по площади наклонного сечения . Тогда полное напряжение наклонного сечения в каждой точке будет равно:

где – нормальное напряжение, возникающее в точках (в том числе и в точке К), но в поперечном сечении стержня (рис. 2.1, в).

Разложим полное напряжение в наклонном сечении (p), возникающее в некоторой точке К, на две составляющие – нормальное ( ) и касательное ( ) напряжения (рис. 2.2, г). Они будут равны:

Проследим, как будет меняться каждое из этих напряжений с изменением угла наклона сечения, проходящего через точку К, от нуля до .

При увеличении угла нормальное напряжение в точке К будет постепенно уменьшаться от своего максимального значения ( ) до нуля. Касательное напряжение при этом будет сначала возрастать от нулевого до максимального значения ( ) при , а затем убывать и при угле снова станет равным нулю.

Следовательно, наибольшее нормальное напряжение действительно возникает в точках поперечного сечения стержня. В продольном сечении оно равно нулю. Следовательно, продольные волокна не давят друг на друга.

Наибольшие касательные напряжения возникают в наклонных сечениях, расположенных под углом к оси стержня. В поперечном и продольном сечениях они равны нулю.

Источник