2.1. Электронно-дырочный переход при отсутствии внешнего напряжения
Электронно-дырочный переход, или сокращенно p-n-переход, – это тонкий переходный слой в полупроводниковом материале на границе между двумя областями с различными типами электропроводности (одна – n-типа, другая – р-типа). Электронно-дырочный переход благодаря своим особым свойствам является основным элементом многих полупроводниковых приборов и интегральных микросхем.
Наряду с p-n-переходами в полупроводниковой технике используются и другие виды электрических переходов, например металл-полупроводник, а также переходы между двумя областями полупроводника одного типа, отличающимися концентрацией примесей, а значит, и значениями удельной проводимости: электронно-электронный (n-n + —переход) и дырочно-дырочный (р-р + —переход). Знак «плюс» относится к слою с большей концентрацией основных носителей заряда.
Электронно-дырочный переход получают в едином кристалле полупроводника, вводя в одну область донорную примесь, а в другую – акцепторную. Атомы примесей при комнатной температуре оказываются полностью ионизированными. При этом атомы акцепторов, присоединив к себе электроны, создают дырки (получается p-область), а атомы доноров отдают электроны, становящиеся свободными (создается n-область) (рис. 2.1, а).
Для простоты примем концентрации основных носителей заряда в обеих областях одинаковыми:
где pp – концентрация дырок в р-области; nn – концентрация электронов в n-области. Такой p-n-переход называют симметричным
В каждой области кроме основных носителей заряда имеются неосновные носители, концентрация, которых значительно меньше, чем основных:
Источник
Электронно-дырочный переход при отсутствии внешнего напряжения
В предыдущих главах мы рассмотрели полупроводники с разными типами проводимости (кто не смотрел, читай сюда). А если эти два полупроводника соединить вместе?
Область на границе двух полупроводников с различными типами проводимости называется электронно-дырочным или p-n-переходом (или n-p-). Электронно-дырочный переход обладает нессиметричной проводимостью, т. е. имеет нелинейное сопротивление. Работа большинства полупроводниковых приборов основана на свойствах одного или нескольких p-n-переходов. Итак, соединим два полупроводника:
Рис. 1 Электронно-дырочный переход при отсутствии внешнего напряжения
Допустим внешнее напряжение на переходе отсутствует. Так как носители заряда в каждом полупроводнике совершают беспорядочное тепловое движение, т. е. имеют собственные скорости, то происходит их диффузия из одного полупроводника в другой. Как и при любой другой диффузии носители перемещаются оттуда, где их концентрация больше, туда, где их концентрация меньше. Таким образом, из полупроводника n-типа в полупроводник p-типа диффундируют электроны, а в обратном направлении — дырки. Соответственно, на рисунке 1 светлые кружки со стрелками дырки, темные — электроны. Кружки побольше обозначают атомы акцепторной и донорной примеси, соответственно заряженные отрицательно и положительно.
В результате диффузии носителей по обе стороны границы раздела двух полупроводников с различным типом электропроводности создаются объемные заряды обоих знаков. В области n создается положительный объемный заряд. Он образован главным образом положительно заряженными атомами донорной примеси и в небольшой степени — пришедшими в эту область дырками. Аналогично в области p.
Между образовавшимися объемными зарядами возникает так называемая контактная разность потенциалов U k= φ n — φ p и электрическое поле (вектор напряженности E k). На все том же рисунке чуть ниже перехода изображена потенциальная диаграмма. На этой диаграмме, показывающей распределение потенциала вдоль оси x, перпендикулярной плоскости раздела двух полупроводников, за нулевой потенциал принят потенциал граничного слоя.
Следует отметить, что объемные заряды возникают вблизи границы n- и p-областей, а положительный потенциал φ n или отрицательный потенциал φ p создается одинаковым по всей области n или p. Если бы в различных частях области потенциал был различным, т. е. была бы разность потенциалов, то возник бы ток, в результате которого все равно произошло бы выравнивание потенциала в данной области. Нужно помнить, что заряд и потенциал имеют разный физический смысл. Там, где есть электрический потенциал не обязательно должен быть заряд
Как видно, в p-n-переходе возникает потенциальный барьер, препятствующий диффузионному переходу носителей. На рис. 1 (нижняя часть рисунка типа графика) изображен барьер для электронов, стремящихся за счет диффузии перемещаться слева направо (из области n в область p).
Высота барьера равна контактной разности потенциалов и обычно составляет десятые доли вольта. Чем больше концентрация примесей, тем выше концентрация основных носителей и тем большее число их диффундирует через границу. Плотность объемных зарядов возрастает, и увеличивается контактная разность потенциалов u k, т. е. высота потенциального барьера. При этом толщина p-n-перехода d уменьшается, так как соответствующие заряды образуются в приграничных слоях меньшей толщины.
Одновременно с диффузионным перемещением основных носителей через границу происходит и обратное перемещение носителей под действием электрического поля контактной разности потенциалов. Это поле перемещает дырки из n-области обратно в p-область и аналогично электроны из p-области обратно в n-область. При постоянной температуре p-n-переход находится в состоянии динамического равновесия. Ежесекундно через границу в противоположных направлениях перемещаются электроны и дырки, а под действием поля столько же их дрейфует в обратном направлении.
Полный ток через переход при динамическом равновесии равен нулю, так как диффузионный ток и ток дрейфа компенсируют друг друга. Если диффузионный ток возрастет, то через переход будет диффундировать больше носителей. Это вызовет увеличение объемных зарядов и потенциала по обе стороны границы. Значение u k возрастет, т. е. усилится электрическое поле в переходе и повысится потенциальный барьер. Но усиление поля вызовет соответствующее увеличение тока дрейфа, т. е. обратного перемещения носителей. Пока диффузионный ток больше тока дрейфа высота барьера растет, но в конце концов за счет увеличения тока дрейфа наступит равенство токов и дальнейшее повышения барьера прекратится.
В p-n-переходе концентрация электронов плавно меняется (относительно границы полупроводников). Меняется также и концентрация дырок. В результате этого в средней части перехода образуется слой с малой концентрацией носителей — так называемый обедненный носителями слой. Соответственно и удельная проводимость будет во много раз меньше, чем в остальных частях n и p. Помимо этого можно рассматривать слой, обедненный подвижными носителями, как результат действия электрического поля контактной разности потенциалов. Это поле «выталкивает» из пограничных слоев подвижные носители: электроны перемещаются в область n, а дырки в область p. Это ответ на вопрос, почему электроны, обладающие отрицательным зарядом, не рекомбинируют с дырками, обладающих положительным зарядом. Поле просто напросто их «раздвигает».
Таким образом, в p-n-переходе возникает слой, называемый запирающим и обладающий большим сопротивлением по сравнению с сопротивлением остальных объемов n- и p-полупроводников.
Источник
Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
Основным элементом многих полупроводниковых приборов, таких как диоды, транзисторы, микросхемы, является контакт двух полупроводников с разным типом электропроводности — электронно-дырочный переход, или p-n- переход. Рассмотрим так называемый гомопереход, в котором n- и p- области сформированы в монокристалле одного и того же полупроводника (например кремния). При создании такого контакта в одну часть полупроводникового кристалла вводят доноры, а в другую – акцепторы. Заметим, что используются полупроводники, для котоpых комнатная температура – это область истощения примеси. Тогда в первой части содержится большое количество электронов, а во второй – большое количество дырок.
Наличие градиентов концентрации носителей заряда приводит к их диффузии в области с противоположным типом электропроводности через плоскость металлургического контакта (плоскость, где изменяется тип примесей, преобладающих в полупроводнике). В результате диффузии носителей заряда нарушается электрическая нейтральность примыкающих к металлургическому контакту частей монокристалла полупроводника: в p-области после диффузии из нее дырок остаются нескомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области — нескомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда, состоящая из двух разноименно заряженных слоев. Между нескомпенсированными разноименными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем (рис. 5.1а). Возникшее диффузионное электрическое поле препятствует дальнейшей диффузии основных носителей — устанавливается равновесное состояние. Между n- и p-областями при этом появляется разность потенциалов Djкон, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области.
Энергетическая диаграмма электронно-дырочного перехода (зависимость энергии электрона E от координаты x) при термодинамическом равновесии изображена на рис. 5.2а. Вдали от контакта двух областей электрическое поле отсутствует (если соответствующие области легированы равномерно) или относительно мало по сравнению с полем в p-n-переходе. Поэтому края энергетических зон вдали от контакта расположены горизонтально. Наличие диффузионного поля приводит к изгибу энергетических зон полупроводника (рис.5.2а). Уровень Ферми устанавливается (при отсутствии внешнего поля) на одинаковой высоте в p- и n-областях.
а) в отсутствие внешнего поля | |
б) прямое включение | |
в) обратное включение | |
Рис. 5.1. Распределение электрических зарядов в p-n-переходе | Рис. 5.2. Энергетические диаграммы p-n-перехода |
Ионы примесей: Å — доноры, Q — акцепторы. Подвижные носители заряда: · — электроны, o — дырки, неосновные носители заряда не показаны. — напряженность диффузионного поля, U –внешнее напряжение, приложенное к переходу. |
Для носителей возникает потенциальный барьер, высота которого равна ( — заряд электрона, — контактная разность потенциалов). Величина контактной разности потенциалов зависит от концентрации собственных носителей заряда ni (а значит, и от ширины запрещенной зоны), концентрации примесей, введенных в полупроводник, и температуры
где Ndn – концентрация доноров в n- области, Nap – концентрация акцепторов в p – области.
По характеру распределения примеси различают резкие и плавные p-n-переходы. Переход, в котором толщина области изменения концентрации примеси значительно меньше толщины p-n-перехода (толщины области объемного заряда), называют резким p-n-переходом. Переход, в котором толщина области изменения концентрации примеси сравнима или больше толщины p-n-перехода, называют плавным p-n-переходом. Вид p-n-перехода зависит от технологии его изготовления. Резкие переходы получают методами вплавления, эпитаксиального наращивания и ионной имплантации, а плавные – методом диффузии примеси.
Прямое включение
Рассмотрим, как изменится распределение зарядов в переходе, если к нему приложить внешнее электрическое поле. Пусть к p-области присоединён положительный полюс источника питания, а к n-области – отрицательный. Такое включение p-n-перехода называется прямым, прямое напряжение принято считать положительным.
Внешнее поле при прямом включении оказывается направленным противоположно диффузионному полю (рис.5.2б). Высота потенциального барьера уменьшается на величину ( — напряжение), она станет равной . При этом часть основных носителей в областях p- и n-, имеющих наибольшую энергию, получают возможность проникать через запирающий барьер в области, где являются неосновными и рекомбинируют. Это приводит к появлению сравнительно большого тока через p-n-переход. Преодолевшие потенциальный барьер носители заряда оказываются в соседней области неосновными; другими словами, через p-n-переход происходит инжекция носителей заряда в область, примыкающую к p-n-переходу. Ту область полупроводника, в которую происходит инжекция носителей, называют базой полупроводникового прибора.
Итак, при прямом включении p-n-перехода происходит инжекция носителей, p-n-переход открыт, через него течёт прямой ток.
Обратное включение
Если подключить внешний источник так, что p-область окажется соединённой с «минусом», а n-область — с «плюсом», то внешнее поле будет направлено так же, как и диффузионное (рис.5.1в). Высота потенциального барьера увеличивается, она станет равной . Через барьер смогут пройти только неосновные носители. Так как количество неосновных носителей значительно меньше, чем основных, ток через переход в этом случае будет мал по сравнению с тем, который получился при прямом включении. Это включение называется обратным, обратное напряжение принято считать отрицательным.
Когда к p-n-переходу приложено обратное напряжение, неосновные носители заряда втягиваются электрическим полем в p-n-переход и проходят через него в соседнюю область – происходит так называемая экстракция неосновных носителей.
Таким образом, при обратном включении p-n-перехода происходит экстракция неосновных носителей, p-n-переход «закрыт», через него течёт только малый ток неосновных носителей.
Источник