Меню

Для чего нужен генератор высокого напряжения



Генераторы высокого напряжения с использованием катушек индуктивности

Все рассмотренные выше генераторы высокого напряжения имели в качестве накопителя энергии конденсатор. Не меньший интерес представляют устройства, использующие в качестве такого элемента индуктивности.

В подавляющем большинстве конструкции подобного рода преобразователей ранних лет содержали механический коммутатор индуктивности. Недостатки такого схемного решения очевидны: это повышенный износ контактных пар, необходимость их периодической чистки и регулировки, высокий уровень помех.

С появлением современных быстродействующих электронных коммутаторов конструкции преобразователей напряжения с коммутируемым индуктивным накопителем энергии заметно упростились и стали конкурентоспособными.

Основой одного из наиболее простых высоковольтных генераторов (рис. 12.1) является индуктивный накопитель энергии.

принципиальная схема

Рис. 12.1. Электрическая схема высоковольтного генератора на основе индуктивного накопителя энергии.

Генератор прямоугольных импульсов собран на микросхеме 555 (КР1006ВИ1). Параметры импульсов регулируются потенциометрами R2 и R3. Частота импульсов управления также зависит от емкости времязадающего конденсатора С1. Импульсы с выхода генератора подаются через резистор R5 на базу ключевого (коммутирующего) элемента — мощного транзистора VT1.

Этот транзистор в соответствии с длительностью и частотой следования управляющих импульсов коммутирует первичную обмотку трансформатора Т1.

В итоге на выходе преобразователя формируются импульсы высокого напряжения. Для защиты транзистора VT1 (2N3055 — КТ819ГМ) от пробоя желательно параллельно переходу эмиттер — коллектор подключить диод, например, типа КД226 (катодом к коллектору).

Высоковольтный генератор (рис. 12.2), разработанный в Болгарии, также содержит задающий генератор прямоугольных импульсов на микросхеме 555 (К1006ВИ1). Частота импульсов плавно регулируется резистором R2 от 85 до 100 Гц. Эти импульсы через RC-цепочки поступают на ключевые элементы на транзисторах VT1 и VT2. Стабилитроны VD3 и VD4 защищают транзисторы от повреждения при работе на индуктивную нагрузку.

принципиальная схема

Рис. 12.2. Схема генератора высокого напряжения на основе индуктивного накопителя энергии.

Генератор высокого напряжения (рис. 12.2) может быть использован как самостоятельно — для получения высокого напряжения (обычно до 1. 2 кВ), либо как промежуточная ступень «накачки» других преобразователей.

Транзисторы BD139 можно заменить на КТ943В. В качестве ключевых элементов преобразователей с индуктивным накопителем энергии долгие годы использовали мощные биполярные транзисторы. Их недостатки очевидны: довольно высоки остаточные напряжения на открытом ключе, как следствие, потери энергии, перегрев транзисторов.

По мере совершенствования полевых транзисторов последние начали оттеснять биполярные транзисторы в схемах источников питания, преобразователях напряжения.

Для современных мощных полевых транзисторов сопротивление открытого ключа может достигать десятые. сотые доли Ома, а рабочее напряжение достигать 1 . 2 кВ.

На рис. 12.3 приведена электрическая схема преобразователя напряжения, выходной каскад которого выполнен на полевом транзисторе MOSFET. Для согласования генератора с полевым транзистором включен биполярный транзистор с большим коэффициентом передачи.

принципиальная схема

Рис. 12.3. Электрическая схема генератора высоковольтных импульсов с ключевым полевым транзистором.

Задающий генератор собран на /ШО/7-микросхеме CD4049 по типовой схеме. Как сами выходные каскады, так и каскады формирования управляющих сигналов, показанные нарис. 12.1 — 12.3 и далее, взаимозаменяемы и могут быть использованы в любом сочетании.

Выходной каскад генератора высокого напряжения системы электронного зажигания конструкции П. Брянцева (рис. 12.4) выполнен на современной отечественной элементной базе [12.2].

принципиальная схема

Рис. 12.4. Схема выходного каскада генератора высокого напряжения П. Брянцева на составном транзисторе.

принципиальная схема

Рис. 12.5. Электрическая схема генератора высокого напряжения с задающим генератором на основе триггеров Шмитта.

При подаче на вход схемы управляющих импульсов транзисторы VT1 и VT2 кратковременно открываются. В результате катушка индуктивности кратковременно подключается к источнику питания. Конденсатор С2 сглаживает пик импульса напряжения. Резистивный делитель (R3 и R5) ограничивает и стабилизирует максимальное напряжение на коллекторе транзистора VT2.

В качестве трансформатора Т1 использована катушка зажигания Б115. Ее основные параметры: R,=1,6 Ом, l 200 кГц.

Первичная обмотка трансформатора Т1, намотанная на сердечнике от трансформатора строчной развертки, имеет 40 витков диаметром 1,0 мм. Выходное напряжение преобразователя на частотах ниже 5 кГц составляет 20 кВ, в области частот 50. 70 кГц выходное напряжение снижается до 5. 10 кВ.

Выходная мощность высокочастотного сигнала устройства может доходить до 30 Вт. В этой связи при использовании данной конструкции, например, для газоразрядной фотосъемки необходимо принять особые меры по ограничению выходного тока.

Высоковольтный генератор, рис. 12.6, имеет более сложную конструкцию.

Его задающий генератор выполнен на операционном усилителе DA1 (СА3140). Для питания задающего генератора и буферного каскада (микросхема DD1 типа 4049) используется стабилизатор напряжения на 12 Б на интегральной микросхеме DA2 типа 7812.

Предоконечный каскад на комплиментарных транзисторах ѴТ1 и ѴТ2 обеспечивает работу оконечного — на мощном транзисторе ѴТЗ.

Соотношение длительность/пауза регулируют потенциометром R7, а частоту импульсов — потенциометром R4.

Частоту генерации можно изменять ступенчато — переключением емкости конденсатора С1. Начальная частота генерации близка к 20 кГц.

Первичная обмотка доработанного трансформатора строчной развертки имеет 5. 10 витков, ее индуктивность примерно 0,5 мГч. Защита выходного транзистора от перенапряжения осуществляется включением варистора R9 параллельно этой обмотке.

Транзистор 2N2222 можно заменить на КТ3117А, КТ645; 2N3055 — на КТ819ГМ-, BD135 — на КТ943А, BD136 — на КТ626А, диоды 1N4148 — на КД521, КД503 и др. Микросхему DA2 можно заменить отечественным аналогом — КР142ЕН8БЩУ DD1 — К561ТЛ1.

Следующим видом генераторов высоковольтного напряжения являются автогенераторные преобразователи напряжения с индуктивной обратной связью.

Импульсный преобразователь с самовозбуждением вырабатывает пакеты высокочастотных высоковольтных колебаний (рис. 12.7).

принципиальная схема

Рис. 12.7. Электрическая схема импульсного преобразователя напряжения с самовозбуждением.

Автогенератор импульсов высокого напряжения на транзисторе VT1 получает сигнал обратной связи с трансформатора Т1 и в качестве нагрузки имеет катушку зажигания Т2. Частота генерации — около 150 Гц. Конденсаторы С*, С2 и резистор R4 определяют режим работы генератора.

Трансформатор Т1 выполнен на магнитопроводе 11114×18. Обмотка I состоит из 18 витков провода ПЭВ-2 0,85 мм, намотанных в два провода, а II — из 72 витков провода ПЭЛШО 0,3 мм.

Читайте также:  Топографическая диаграмма напряжений показывает что

Стабилитрон VD2 укреплен в центре дюралюминиевого радиатора размерами 40x40x4 мм. Этот стабилитрон можно заменить цепочкой мощных стабилитронов с суммарным напряжением стабилизации 150 В. Транзистор VT1 также установлен на радиаторе размерами 50x50x4 мм.

Резонансный преобразователь напряжения с самовозбуждением описан в работе Е. В. Крылова (рис. 12.8). Он выполнен на высокочастотном мощном транзисторе VT1 типа КТ909А.

Трансформатор преобразователя выполнен на фторопластовом каркасе диаметром 12 мм с использованием ферритового стержня 150ВЧ размером 10×120 мм. Катушка L1 содержит 50 витков, L2 — 35 витков провода ЛЭШО 7×0,07 мм. Катушки низковольтной половины устройства имеют по одному витку провода во фторопластовой (политетрафторэтиленовой) изоляции. Они намотаны поверх катушки L2.

принципиальная схема

Рис. 12.8. Схема резонансного высоковольтного генератора с трансформаторной обратной связью.

Выходное напряжение преобразователя составляет 1,5 кВ (максимальное — 2,5 кВ). Частота преобразования — 2,5 МГц. Потребляемая мощность — 5 Вт. Выходное напряжение устройства изменяется от 50 до 100% при увеличении напряжения питания с 8 до 24 В.

Конденсатором переменной емкости С4 трансформатор настраивают на резонансную частоту. Резистором R2 устанавливают рабочую точку транзистора, регулируют уровень положительной обратной связи и форму генерируемых сигналов.

Преобразователь безопасен в работе — при низкоомной нагрузке высокочастотная генерация срывается.

Следующая схема высоковольтного источника импульсного напряжения с двухкаскадным преобразованием показана на рис. 12.9. Электрическая схема его первого каскада достаточно традиционна и практически не отличается от рассмотренных ранее конструкций.

Отличие устройства (рис. 12.9) заключается в использовании второго каскада повышения напряжения на трансформаторе. Это заметно повышает надежность устройства, упрощает конструкцию трансформаторов и обеспечивает эффективную изоляцию между входом и выходом устройства.

принципиальная схема

Рис. 12.9. Схема высоковольтного преобразователя с трансформаторной обратной связью и двойным трансформаторным преобразованием напряжения.

Трансформатор Т1 выполнен на Ш-образном сердечнике из трансформаторной стали. Сечение сердечника составляет 16×16 мм. Коллекторные обмотки I имеют 2×60 витков провода диаметром 1,0 мм.

Катушки обратной связи II содержат 2×14 витков провода диаметром 0,7 мм. Повышающая обмотка III трансформатора Т1, намотанная через несколько слоев межслойной изоляции, имеет 20. 130 витков провода диаметром 1,0 мм. В качестве выходного (высоковольтного) трансформатора использована катушка зажигания автомобиля на 12 или 6 В.

К генераторам высокого напряжения с индуктивными накопителями энергии следует отнести и устройства, рассмотренные ниже.

Для получения высоковольтных наносекундных импульсов В. С. Белкиным и Г. И. Шульженко была разработана схема формирователя на дрейфовых диодах и насыщающейся индуктивностью с однотактным преобразователем, синхронизированным с формирователем, а также показана возможность совмещения функций ключа формирователя и преобразователя.

Схема преобразователя, синхронизированного с формирователем, приведена на рис. 12.10; вариант схемы формирователя с раздельными ключевыми элементами приведен на рис. 12.11, а временные диаграммы, характеризующие работу отдельных узлов схемы формирователя, — на рис. 12.12.

принципиальная схема

Рис. 12.10. Схема формирователя высоковольтных импульсов с общим ключом для преобразователя и формирователя.

принципиальная схема

Рис. 12.11. Фрагмент схемы формирователя высоковольтных импульсов с раздельными ключами.

принципиальная схема

Рис. 12.12. Временная диаграмма работы преобразователя.

Задающий генератор прямоугольных импульсов (рис. 12.10) вырабатывает импульсы, отпирающие транзисторный ключ VT1 на время tH и запирающие на время t3 (рис. 12.12). Их сумма определяет период повторения импульсов. За время tH через дроссель L1 протекает ток Ін. После запирания транзистора ток Ін через диод VD1 заряжает накопительную емкость формирователя С1 до напряжения Uн, диод VD1 закрывается и отсекает конденсатор С1 от источника питания.

В таблице 12.1 приведены данные по возможному использованию полупроводниковых приборов в формирователе высоковольтных импульсов. Амплитуда формируемых импульсов приведена для низкоомной нагрузки величиной 50 Ом.

Таблица 12.1. Выбор элементов для формирователей высоковольтных импульсов.

Источник

Высоковольтный модуль где используется?

Высоковольтный модуль зажигания применяется для самозащиты и изготовления современной техники. Зная последовательность работ, можно изготовить такое устройство собственными руками. Как это сделать и где можно найти готовые изделия, расскажет эта статья.

Описание

Высоковольтный модуль – это блок с 4 проводами, 2 из которых необходимы для подключения питания. Как видим, ничего сложного.

Если нужен высоковольтный модуль, его можно приобрести в интернет–магазине или изготовить собственными руками. Готовое устройство работает от пальчиковых литиевых батареек с 3,6 до 6 вольт на входе. На выходе может выдаваться мощность в 400 вольт.

Генератор высокого напряжения имеет в составе 4 провода. Для проверки качества покупки можно взять модуль литий-ионного аккумулятора на 3,7 вольта. По параметрам между электродами должна пролетать искра до 2 см.

Такие работы необходимо производить особенно аккуратно. Разведите провода высоковольтного модуля и подсоедините их к аккумулятору. При подаче питания отмечается звуковой эффект в виде свиста. Также произойдет разряд, длина воздействия которого — 1,5-2 см.

Как это работает

Демонстрация работы модуля высоковольтного преобразователя может производиться с использованием генератора. Для этого необходимо питание от бесперебойника на 12 вольт и лампа на 25 Вт. При подсоединении проводов она горит полным накалом.

Описание изготовления высоковольтных генераторов

Умение мастерить выручает не раз в жизни. К примеру, хорошие высоковольтные генераторы стоят достаточно дорого. К тому же их сложно достать. Но ведь высоковольтный модуль успешно можно изготовить своими руками. Для этого понадобится шаговый двигатель, который может прекрасно работать в режиме генерации.

Прямо на вал шаговика присоединяют ручку, вращают ее и заряжают телефон в походных условиях. Эту зарядку можно изготовить своими руками за несколько минут.

Усовершенствование моделей

Есть множество подобных изобретений, но мощность их недостаточно высока. Для зарядки телефона нужно как минимум 2 Вт на выходе такого моторчика для старой модели мобильного устройства и не менее 5 Вт — для современного смартфона.

Читайте также:  Определить магнитные напряжения синхронных машин

Где взять высоковольтный модуль с хорошей мощностью? Попытаемся его сделать самостоятельно. Подберем удобную ручку вращения для шаговика, все выводы проводов подсоединим по схеме. Результирующие выводы постоянного тока будут идти на ваттметр и на нагрузку, которая подобрана под этот двигатель и под обороты по оптимальным параметрам.

Какую же мощность удастся развить на крупном шаговом двигателе при оборотах в количестве 120 в минуту? Начнем опыт. Ваттметр показывает 0,8 Вт при напряжении 6 вольт и токе 0,11–0,12 ампер. При более быстром вращении пиковая цифра достигает 1 ампера, но это при очень быстрых оборотах.

Следовательно, подобное устройство требует усовершенствования. Нужен преобразователь, повышающий обороты в 3-4 раза, чтобы успешно можно было заряжать телефон в походных условиях.

Для этого применяется коллекторный моторчик. Можно сделать ременную передачу на этот двигатель, чтобы повысить его обороты в 3 раза. Получится установка с диаметром шкива, который в 3 раза больше того, который установлен на шаговом двигателе. Теперь такое устройство будет вращаться в 3 раза быстрее, что позволит достигнуть показателей в 2–2,2 Вт. При этом напряжение – 17 вольт, ток – 0,12-0,13 ампер. Такая мощность уже более значительна. Если устройство закрепить на столе, крутить ручку достаточно просто.

Чем больше обороты, тем больше полезной мощности может выдать генератор.

Делаем электрошокер: подготовка

Электрошоковые устройства могут быть очень мощными. Законом разрешено использовать устройства до 3 Ватт, которые не способны нанести тяжкий вред здоровью, но гарантируют довольно сильный удар током и ожог.

Схема устройства следующая:

  • источник питания;
  • повышающий преобразователь;
  • высоковольтный умножитель напряжения.

Можно использовать обычный литий-ионный аккумулятор компактных размеров, лучше — литий-железофосфатный. Он имеет меньшую емкость при одинаковом весе, а номинальное напряжение составляет 3,2 вольт против 3,7 вольта в литий-ионном варианте.

Такое устройство обладает массой преимуществ:

  • При собственной емкости всего в 700 мА/часов такой способен отдавать токи в 30-50 А.
  • Имеет срок службы 10-15 лет.
  • Способен работать при температуре до -30 градусов без утраты емкости и прочих негативных последствий.
  • Экологически чист, безопасен, не вздувается и не взрывается.
  • Утрачивает емкость гораздо медленнее.
  • Не так чувствителен к параметрам зарядного устройства, может быть заряжен большими токами, не перегреваясь.

Для преобразователя можно использовать готовую модель из Китая. Или изготовить его собственными руками. Самое важное в таком устройстве – трансформатор. Его можно взять от дежурного источника неработающего блока питания компьютера. Желательно, чтобы он был удлиненного типа, что облегчит процесс мотания.

Собираем устройство

Трансформатор нужно разобрать, извлечь сердечник и нагревать его паяльной лампой в течение 5-10 минут. Структура клея ослабеет, и половинкам легче будет разъединиться.

Внутри есть зазор. Удаление половинок в сердечнике сменяется этапом смотки всех заводских обмоток, остается только поверхность голого каркаса.

Правила выполнения намоточных движений

Высоковольтный модуль для электрошокера требует, чтобы была выполнена намотка первичного типа трансформаторной обмотки. Длину провода в 0,5 мм складывают в два раза. Оптимальные показатели диаметра – от 0,4 до 0,7 мм. Потребуется намотать не менее 8 витков и вывести второй конец проводов наружу.

Изолируем намотанную обмотку при помощи нескольких слоев фторопласта или прозрачного скотча. К тонкому поводу, толщина которого не более 0,05 мм, припаивается кусок многожильного провода, помещенного в толстую изоляцию.

Места, где была выполнена пайка, изолируем при помощи термоусадки. Выводим провод и фиксируем его термоклеем, чтобы случайно не оборвать в процессе обмотки.

Наматываем первичную обмотку, по 100-120 витков, чередуя ее с несколькими слоями изоляции. По своему принципу намотка проста: ряд – слева направо, второй – справа налево, с изоляцией между ними. Так повторяем от 10 до 12 раз.

После того, как намотка выполнена, провода срезаются, к ним припаиваются многожильные высоковольтные провода и термоусадка. Все фиксируют посредством нескольких слоев прозрачным скотчем и собирают трансформатор.

Если не хотите так долго наматывать витки, можно приобрести готовые модули в китайских интернет–магазинах по вполне доступной стоимости или изготовить высоковольтный модуль своими руками.

Испытание устройства

Следующая часть умножителя напряжения – высоковольтные диоды и конденсаторы, которые можно взять от компьютерного блока питания. Диоды нужны также высоковольтного типа. Их напряжение должно быть от 4 кВт. Такие элементы также можно приобрести в интернет–магазинах.

Корпусом может служить коробка от фонарика или плеера, но обязательно из диэлектрического материала: пластмассы, бакелита, стеклотекстолита.

Умножитель с высоковольтным преобразователем рекомендуется залить эбокситной смолой, расплавленным воском или термоклеем. Последний может сильно деформировать корпус, если не поместить его в емкость с холодной водой.

Электроды можно взять от обычной вилки. Шокер снабжен предохранительным выключателем для защиты от случайного включения. Для активации устройства его снимают с предохранителя. Загорается индикаторный светодиод, затем нажимают на кнопку.

Высоковольтный модуль — преобразователь напряжения успешно показывает работоспособность в электрошокере. Зарядное устройство построено на базе микросхемы, где на вход модуля подается напряжение в 5 вольт, на выходе в 3,6 вольта. Такая зарядка позволяет питать девайс от любого USB-порта.

С помощью припоя можно сделать защитные разрядники, ограничивающие длину дуги для безопасной работы высоковольтного преобразователя. Шокер готов.

Изготовление высоковольтного модуля из энергосберегающей лампы

И такое устройство можно без труда изготовить своими руками. Вот только где взять высоковольтный модуль? Можно использовать обычную лампочку накаливания. Вначале мотаем не более 80 мотков. Второй слой – 400-600 витков. Между каждым слоем не забываем делать изоляцию из скотча.

Для испытания устройства подключим его через ограничительную лампочку в 35 Вт. Получился достаточно мощный высоковольтный модуль зажигания.

Сферы применения продукции

Где используется высоковольтный модуль? Такие устройства широко используются для изготовления современной аппаратуры, могут служить лабораторным генератором высокого напряжения. С помощью такого устройства можно построить самодельный шокер, систему для поджигания топлива в форсунке или двигателе.

Читайте также:  Какова кинетическая энергия электронов достигающих анода при напряжении 100кв

Можно использовать для обеспечения питания портативного счетчика Гейгера, дозиметра, разновидностей аппаратуры, требующей высоких показателей напряжения с питанием, которое имеет небольшую мощность.

Устройство микросхемы включено в режиме «Мультивибратор» при показателях частоты, регулируемой в зависимости от того, каковы характеристики трансформатора. Высокий уровень, который показывает выходной сигнал тока, протекающий по резистору и первичной обмотке трансформатора, способен зарядить конденсатор 10 мкф. Для того, чтобы изготовить электрошок, потребуется устройство трансформатора, коэффициент умножения которого составляет 1 к 400 и выше.

Для получения искры в 1 мм нужны показатели напряжения около 1000 В. Зная последовательность работ, можно изготовить такое устройство собственными руками.

Источник

Радиолюбитель

Последние комментарии

  • Владислав на Новогодние схемы
  • Алек на Светодиодный ночник
  • Владимир на Программа “Компьютер – осциллограф”
  • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах
  • ДЕМЬЯН на Регулируемый блок питания 0-12 В на транзисторах

Радиодетали – почтой

Применение высоковольтного импульсного генератора

Автор: ПЕНТКО Аркадий Альбертович
Город: Нижний Новгород

Применение высоковольтного импульсного генератора

Самостоятельное изготовление высоковольтного импульсного генератора и его применение в быту и медицине

Хочу поделиться опытом конструирования и использования импульсных генераторов высокого напряжения.

Импульсные высоковольтные генераторы

На рис.1 приведена схема генератора импульсов ВН частотой 25 Гц для получения приличной искры чтобы, например, поджигать газ. Собственно для этого он и был собран – для длительной работы бобины зажигания на запальнике горелки в газовой котельной. Бобины по паспорту не должны работать более 1минуты иначе они перегревались и выходили из строя, а операторы зачастую забывали их выключать. Данная схема работала сутками, практически не нагреваясь. Вместо бобины зажигания можно использовать строчный трансформатор от старого цветного телевизора, которые ещё встречаются в сараях и на помойках. Если-же повезёт, то можно найти и старый ламповый ч\б телевизор с целой высоковольтной обмоткой. В этом случае необходимо удалить первичную обмотку и прямо на феррит намотать виток к витку провод в виниловой изоляции ( например марки ПВ ) сечением 1,5 кв.мм. Убирается где-то витков 15.

Теперь о деталях. Конденсаторы лучше использовать керамические (бумажные шумят, а вернее щёлкают во время разряда) VD4-5 c обратным напряжением более 600 в. VD2 импульсный, КД226 например, из того же цв.TV из блока питания или строчной развёртки. Тиристор тоже любой: КУ-202 или импортный какой нибудь. А вот о VD1 следует поговорить отдельно. Диод тут включается как стабилитрон с высоким напряжением стабилизации. Собрав схему по рис.4 можно подобрать нужный диод. Я использовал 2Д202А с разбросом Uстаб от 360 до 450 в. С1 и С2 от 10 мкф для ограничительного резистора 620 кОм, до 100 мкф – для резистора 62 кОм. От этого резистора зависит ток через испытуемую деталь, а от ёмкости конденсаторов величина пульсаций выпрямленного напряжения. Применяя рекомендованные величины имеем пульсацию около 2 вольт при выходном напряжении 620 вольт и токах 1 мА (при 620 кОм) и 10 мА (при 62 кОм). При желании можно воспользоваться, автотрансформатором или, на худой конец, потенциометром (рис.5).

И наконец, рассмотрим схему на рис.3 и прилагаемое фото, на которых представлен прибор для лечения всяческих кожных болячек т.н. “Ультратон” – как его называют в продаже или Д”Арсонваль – как его именуют в кабинетах физиотерапии.

Ультратон

Естественно схема мной доработана и прошла апробацию у двух врачей, моих знакомых. Естественно в своей практике они не имеют права использовать этот прибор, т.к. он не сертифицирован, но в домашних условиях с удовольствием применяют и благодарят. Способы применения и показания к применению я описывать не собираюсь, т.к. не рекламный агент. Заинтересованные сами найдут, а я расскажу немного о деталях. Высоковольтный конденсатор – самая дефицитная деталь и кроме как в старых ч\б телевизорах его разве что на барахолке можно отыскать. Трансформатор тоже желательно использовать “с оттэдова” переделав его как было описано выше (правда при этом крайне желательно посмотреть на осциллографе вид выходных импульсов. Первый, самый начальный из затухающей синусоиды должен быть отрицательной полярности), а если использовать ТВС от цв. TV от 3УСЦТ и выше, то номера выводов на рис.3 обозначены. Высоковольтный провод я использовал от неоновой рекламы, хотя можно использовать и коаксиальный кабель старого типа РК… со снятым экраном-оплёткой. Правда в этом случае провод будет несколько жестковатым. В качестве лечебного электрода хорошо использовать неоновые цифро-знаковые индикаторы (ИН-1 и др.) желательно с фронтальным а не боковым (типа ИН-14) обзором . Все выводы у неонки соединяем вместе , припаиваем к высоковольтному проводу и обильно изолируем термоклеем из клеящего пистолета т.к. совершенно недопустимо “протекание” тока непосредственно от высоковольтного провода к телу ,только через стекло неоновой лампы! Напоследок о стабилитронах, обеспечивающих разный режим работы и , стало-быть интенсивность воздействия аппарата. Я ставил первый прибор с Uст.-120…140в, а затем десять КС515А , которые переключал SA-1 так, что с каждым щелчком прибавлялось по 15в.

В заключении скажу, что если бы не такой прибор то валяться бы мне в больнице в чужом городе когда в командировке у меня в руках коротнули 3 фазы и были обожжены руки (аж с металлизацией) и половина лица. А так удалось избежать нагноения и через 10 дней я уже был в строю, хотя и не с полной нагрузкой.

Удачи в экспериментах , но не забывайте , что кроме устройства с рис.3 остальные не имеют гальванической развязки от сети!! Соблюдайте осторожность!

Источник