Меню

Для чего используется выпрямитель напряжения



Выпрямители (Часть 1). Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Устройство и структура выпрямителя

Vypriamiteli osnovnaia skhema

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Vypriamiteli struktura

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Formula

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1 — рабочая первичная величина тока и напряжения, I2, U2 – рабочая величина вторичного тока и напряжения.

Читайте также:  Стабилизатор напряжения от 12вольт

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Vypriamiteli odnofaznaia odnotaktnaia skhema

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Источник

Выпрямитель напряжения

Выпрямитель напряжения – это не совсем правильное сочетание слов, относящееся к схемам на различных выпрямителях тока. К последним относятся, прежде всего, диоды. Ранее использовались кенотроны различной конструкции.

Из истории вопроса

Выпрямить удаётся исключительно ток, впрочем, если применить слово к напряжению, профессионалу термин останется понятым. Электроны способны двигаться по проводу в обоих направлениях, в зависимости от разницы потенциалов. Происходящее называется переменным током, током переменного направления. Чтобы электроны постоянно двигались прямо и не сворачивали, требуется выпрямитель.

Следовательно, определение уточняется. Выпрямителем (напряжения) тока называется прибор, заставляющий электроны в цепи двигаться лишь в единственном направлении. Присутствует разница между профессиональной средой и любителями:

  1. Ученикам в школе рассказывают, что прямым называется постоянный ток. На уровне класса физики не происходит деления. Возможно, чтобы не путать учащихся.
  2. Профессионалы импульсы одной полярности уже называют выпрямленным напряжением (током). В этом свете простой диодный вентиль без сглаживающего фильтра считается выпрямителем в полном смысле слова.

Таким образом, словосочетание, указанное выше, допустимо трактовать по-разному. Если требуется постоянный ток, как в аккумуляторе, но из розетки, искомый прибор полагается называть:

  • Адаптер постоянного тока.
  • Блок питания постоянного тока.
  • Преобразователь постоянного тока.

Но не выпрямитель. Под последним понимается просто срезание отрицательной части тока и напряжения. Обработке подвергаются оба параметра, вытекая из закона Ома для участка цепи. Переозвучим: если на концах цепи без разрывов присутствует напряжение, потечёт ток. Единственное исключение из правила даёт конденсатор. В традиционном физическом классе не рассматривается при упоминании законов Ома. Зато в высшей школе преподают, что ёмкостное сопротивление изменяет сдвиг фаз между напряжением и током.

Обобщая: выпрямитель выпрямляет сразу два параметра, ток и напряжение. В первом случае присутствует однонаправленное движение электронов, во втором – градиент разницы потенциалов постоянен. Выпрямляющие свойства в противовес общественному мнению первоначально открыты в полупроводниках. Электронные лампы изобрели намного позднее в результате изысканий Томаса Эдисона и прочих (см. Лампа накаливания).

Открытие по полупроводникам сделано в 1874 году Карлом Фердинандом Брауном вскоре после перебазирования к новому месту назначения научного руководителя Георга Квинке. Университет не нашёл подходящей должности, открыватель эффекта выпрямления начинает преподавать в средней школе. Обширный досуг предоставляет Брауну достаточно времени для научной деятельности, в свет выходит первая работа по искусственным и натуральным окислам меди, платины, нейзильбера, пирита, халькопирита, галенита.

Исследование тетраэдра из блеклой породы показало анизотропность найденных свойств. Подводя к каждой из 8 граней серебряную проволоку, учёный измерял ток при помощи мультипликатора (гальванометр). Напряжение вольтова столба постоянно перепроверялось, памятуя печальный опыт Георга Ома. Требование возникло, когда учёный обнаружил нелинейность проводимости контакта металл-кристалл. Сегодня эту половинку параболы видим на любой вольт-амперной характеристике диода. Собственно, так и обнаружились выпрямляющие свойства минералов. Остаётся лишь сожалеть, что перевод работы на русский язык отсутствует, а английский доступен лишь за солидную сумму денег, но упорные читатели пусть покоряют немецкий!

Читайте также:  Кончаю от напряжения бедер

Ламповые выпрямители

Согласно статистике на момент середины 70-х годов из всей производимой в СССР энергии примерно четверть требовалось преобразовать в постоянный ток. Для действия потребовались дешёвые и качественные приборы, нежели предложенные потребителям сталинскими заводами.

Уже выедены были многочисленные технические решения, но большая часть электрических схем реализовывалась на лампах: диодах, триодах и пр. На рисунке представлены застойные варианты выпрямителей, взятые из книги Мазеля К.Б. издания 1951 года. Безусловным достоинством схем признана понятность читателю. Описание однополупериодного лампового выпрямителя:

  1. Переменный ток подаётся на трансформатор с двумя вторичными обмотками, одна предназначена целиком для подогрева катода (на рисунке – справа, дуга).
  2. Стрелка с направлением тока не вводит в заблуждение: электроны движутся внутри вакуума в противоположном направлении.
  3. Цепь катода включена в заземлённый контур, чтобы замкнуть путь для выходного тока. Электроны, разогревающие активный слой, сюда не ответвляются в силу очевидных причин.
  4. На выходе стоит полосовой фильтр из индуктивности и ёмкостей, служащий для отсеивания ненужных гармоник.

Двухполупериодный действует аналогичным образом, вместо диодной лампы используется двуханодный кенотрон. В результате появляется возможность повышения КПД. Выходной ток снимается через среднюю точку, где всегда течёт в направлении, указанном на рисунке. Схема представляет аналог диодного моста.

Первый вариант схемы используется для удешевления конструкции и уменьшения габаритов. Одновременно сильнее расходуется запас батарейки. Причина – выпрямляется лишь единственный полупериод колебания входного напряжения питания. На выходе фильтра, как правило, сохраняется остаточная частота пульсаций, совпадающая с сетевой. Уже в сталинские времена схемы иногда оборудовали селеновыми или купроксными полупроводниковыми диодами. Напомним, на основе оксида меди в 1874 году Карл Фердинанд Браун открыл выпрямляющие свойства неметаллических элементов (см. Полупроводниковый диод).

Двухполупериодная схема прежде считалась распространенной для питания маломощных радиоприёмников. Частота пульсаций выходит удвоенной, зато амплитуда меньше, нежели в однополупериодной схеме при эквивалентных фильтрах гармоник. Большой минус: число витков рабочей обмотки приходится увеличивать, чтобы достичь схожего коэффициента передачи каскада. Следовательно, схема более высоковольтная.

Выпрямитель на лампах с удвоением напряжения

Схема с умножением напряжения (вдвое) собирается на двух кенотронах (ламповых диодах). Это станет платой за увеличенный вольтаж. Как легко увидеть из рисунка, кенотроны включены навстречу, за счёт чего первый пропускает ток в положительном направлении, а второй – в отрицательном. Несомненный плюс схемы: трансформатор приобретает меньшие размеры, а вторичная обмотка находится под меньшим напряжением. Цепи подогрева раздельные для обеих ламп, иного не дано: катод кенотрона закорачивался бы на анод.

Пунктиром здесь показана схема снятия напряжения без его удвоения, допустимо использовать с потерей КПД системы. Недостаточность фильтрации в современной электронике легко повысить, применяя схемы, обычные для импортной техники, одна представлена на рисунке. Это типичное техническое решение для стиральных машин, требующее присутствия в доме системы заземления TN-S. Рабочий и защитный нулевые проводники не должны соприкасаться в любой точке. Это обеспечивает качественную фильтрацию помех по фазе и нейтрали одновременно, что в конечном итоге продлит жизнь электроники в доме.

Частота пульсация в схеме с удвоением удвоенная, используются оба полупериода. Кенотроны возможно заменить на полупроводниковые диоды без потери работоспособности схемы. Рекомендуется обеспечить раздельное питание катодов кенотрона, дополнительная особенность: при непосредственном заземлении одного конца вторичной обмотки нейтраль выходного напряжения соединять с грунтом уже нельзя. Лучше такое заземление выполнять через конденсатор ёмкостью 500 – 1000 мкФ.

Простые диоды возможно заменить на двуханодные кенотроны с катодами, электрически изолированными от единой нити накала. Это делается, когда есть общий (на прибор) питающий трансформатор. Тогда нить накала питается из общей сети (питания накала) и отделяется от остальной части бареттером (вакуумным ограничителем тока). В остальном схема мало отличается от представленной выше.

Полупроводниковые схемы выпрямителей

Полупроводниковый выпрямитель с учетверением напряжения порадует любителей домашних экспериментов. При помощи такой штуковины удастся сильно намагнитить металлический стержень, как Араго в 1820 году (о чем известно из его собственной заметки, опубликованной в томе XV журнала Annales de chimie et de physique). За четыре года до изобретения Вильяма Стерджена! Араго наблюдал действие проволоки с электрическим током на металлические опилки, но не придал наблюдению оттенка практичности или коммерциализации.

Читайте также:  1 фазный двигатель как генератор 3 фазного напряжения

Схема простая, но демонстрирует недостаток – нужно где-то набрать четыре высоковольтных конденсатора. Напряжение каждого указано на изображении, и этим допустимо руководствоваться при отборе. Конденсаторы не должны быть электролитическими, знак на контактах поменяется. Плюс и минус указаны только для иллюстрации образования выходного напряжения.

На положительном полупериоде заряжается нижняя пара ёмкостей, а на отрицательной – верхняя. Конденсаторы в каждой паре включены параллельно (см. параллельное включение конденсаторов) и последовательно (см. последовательное включение конденсаторов) одновременно. Смотря по какому полупериоду пришло время. Номиналы лучше брать одинаковыми.

Кенотроны и твердотельные выпрямители

Выше намеренно не приводятся все известные схемы на твердотельной электронике, часть увидите в теме диодный мост. Найдутсятам и трёхфазные технические решения, в том числе принадлежащие Ларионову. Важнее рассмотреть критерии выбора кенотронов. Тематика древняя, литературу найти сложно среди интернетского завала, появляется смысл остановиться подробнее на старой элементной базе.

В аудиозаписи и на концертах ламповые усилители популярны и поныне. Стоят немалых денег. Купить сумеет не каждый, а вот собрать собственноручно… Артисты утверждают, что звук получается насыщенный объёмный. Авторам приходилось даже слышать, что, мол, от вибраций колонок в лампах электроны летят по-особенному. Оттого и звучание столь своеобразное.

  • Важным параметром считается максимально допустимое обратное напряжение. Как в случае с твердотельной техникой, способно повредить: образуется лавинный пробой за счёт эмиссии электронов с анода. Сопровождающийся значительной температурой, сожжёт лампу.
  • Внутренним сопротивлением называется величина, обратная проводимости лампы в открытом состоянии. Определяется из вольт-амперной характеристики прибора (см. рис.). Как для обычного диода потребуется разницу потенциалов поделить на ток. Значения берутся по выбранной рабочей точке, либо по максимуму входного напряжения.
  • Максимальные ток в импульсе и напряжение способны превышать средние выпрямленные значения. Потребуется убедиться, что лампа не сгорит в имеющихся условиях.

Источник

Выпрямители напряжения: основные понятия

Выпрямитель переменного напряжения строится либо на диодах, либо на тиристорах, либо на их комбинации. Выпрямитель, построенный на диодах, является неуправляемым, а на тиристорах — управляемым. Если используются и диоды, и тиристоры, выпрямитель является полууправляемым.

Неуправляемые выпрямители

Диоды позволяют току протекать только в одном направлении: от анода (А) к катоду (К). Как и в случае некоторых других полупроводниковых приборов, величину тока диода регулировать невозможно. Напряжение переменного тока преобразуется диодом в пульсирующее напряжение постоянного тока. Если неуправляемый трехфазный выпрямитель питается трехфазным напряжением переменного тока, то и в этом случае напряжение постоянного тока будет пульсировать.

Выходное напряжение неуправляемого выпрямителя равно разности напряжений двух диодных групп. Среднее значение пульсирующего напряжения постоянного тока равно 1,35 х напряжение сети.

Управляемые выпрямители

В управляемых выпрямителях диоды заменены тиристорами. Подобно диоду тиристор пропускает ток только в одном направлении — от анода (А) к катоду (К). Однако в противоположность диоду тиристор имеет третий электрод, называемый «затвором» (G). Чтобы тиристор открылся, на затвор должен быть подан сигнал. Если через тиристор течет ток, тиристор будет пропускать его до тех пор, пока ток не станет равным нулю.

Ток не может быть прерван подачей сигнала на затвор. Тиристоры используются как в выпрямителях, так и в инверторах.

На затвор тиристора подается управляющий сигнал α, который характеризуется задержкой, выражаемой в электрческих градусах. Эти градусы оказывают запаздывание между моментом перехода напряжения через нуль и временем, когда тиристор открыт.

Если угол а находится в пределах от 0° до 90°, то тиристорная схема используется в качестве выпрямителя, а если в пределах от 90° до 180° — то в качестве инвертора.

Управляемый выпрямитель в своей основе не отличается от неуправляемого за исключением того, что тиристор управляется сигналом а и начинает проводить с момента, когда начинает проводить обычный диод, до момента, который находится на 30° позже точки перехода напряжения через нуль.

Регулирование значения а позволяет изменять величину выпрямленного напряжения. Управляемый выпрямитель формирует постоянное напряжение, среднее значение которого равно 1,35 х напряжение сети x cos α.

По сравнению с неуправляемым выпрямителем управляемый имеет более значительные потери и вносит более высокие помехи в сеть питания, поскольку при более коротком времени пропускания тиристоров выпрямитель отбирает от сети больший реактивный ток.

Преимуществом управляемых выпрямителей является их способность возвращать энергию в питающую сеть.

Источник