Меню

Датчики для измерения постоянного напряжения



Датчики измерения тока и напряжения для систем автоматизации

Сегодня ОАО «НИИЭМ» предлагает потребителям более 250 модификаций датчиков, которые занимают достойное место на рынке приборов. Но как не растеряться и сделать правильный выбор? Что надежнее и проще в эксплуатации – российские разработки или зарубежные аналоги? Авторы статьи дают информацию о первичных датчиках и разъясняют особенности этих приборов для того, чтобы помочь разобраться в их преимуществах и недостатках.
ОАО «НИИЭМ», г. Истра

Отделение первичных датчиков существует в ОАО НИИ Электромеханики (ОАО «НИИЭМ», г. Истра, Московской обл.) уже не первый десяток лет. И тем не менее можно утверждать, что именно сегодня направление разработки и производства отечественных датчиков переживает свое второе рож­дение. Это объясняется прежде всего тем, что нынешний уровень развития производства требует не только совершенствования технологических процессов, но и их автоматизации. Кроме того, современное предприятие сегодня немыслимо без автоматизированных систем учета, управления производством и т.д. А поскольку базируются все процессы автоматизации на показаниях первичных датчиков, то вполне понятен интерес и повышенные требования, которые предъявляются к конструкции и характеристикам датчиков различных физических величин.

Что измеряют датчики фирмы НИИЭМ
В целом датчики, разработанные и выпускаемые НИИЭМ, можно разбить на две группы – это датчики измерения тока и напряжения, и датчики активной мощности. Однако такая квалификация датчиков будет весьма условной если вспомнить, что сегодня ­НИИЭМ предлагает потребителям более 250 модификаций указанных датчиков. Основная цель настоящей статьи и заключается в том, чтобы дать разработчикам и эксплуатационникам информацию о первичных датчиках, разъяснить особенности этих приборов и помочь разобраться в их преимуществах и недостатках. Вооруженный этими знаниями потребитель сегодня решает сам: использовать отечественные приборы или сделать выбор в пользу зарубежных аналогов, которые в широком ассортименте присутствуют на рынке.

Рис. 1. Внешний вид датчиков производства ОАО «НИИЭМ»

Датчики измерения тока и напряжения
Это самая многочисленная группа приборов и физические принципы, лежащие в основе этих датчиков, так или иначе, повторяются во всех остальных модификациях. Любой ток, протекающий по проводнику, создает вокруг этого проводника магнитное поле. Измеряя величину и направление этого магнитного поля, можно определить величину, направление и форму протекающего тока. Отсюда и основное преимущество датчиков тока, реализующих указанный принцип работы: они измеряют любой вид тока без разрыва токовой цепи и с гальванической развязкой выходного сигнала от токовой цепи. Поэтому, даже несмотря на большую стоимость, датчики измерения тока успешно заменяют токовые шунты и трансформаторы тока.

Универсальные датчики тока
Универсальность датчиков заключается в том, что одним и тем же прибором можно измерять постоянные, переменные и импульсные токи. Для этого в конструкцию датчика кроме концентратора магнитного поля входит так называемый датчик Холла – миниатюрный полупроводниковый прибор, определяющий величину и направление магнитного поля проходящего тока.

Таблица 1. Основные технические характеристики выпускаемых датчиков измерения постоянного и переменного токов (ДТХ, ДТР)

Конструктивно датчик тока представляет из себя миниатюрный автономный модуль, электронная начинка которого питается от постоянного напряжения ±15 В*. Потребитель должен только пропустить токовую шину через отверстие в корпусе датчика тока. Выходной сигнал такого датчика строго пропорционален измеряемому току.
Понятно, что в зависимости от величины измеряемого тока и внешних условий эксплуатации датчиков меняется диаметр отверстия и конструкция корпуса этих приборов. На рис. 1 представлены типовые образцы датчиков тока, серийно выпускаемых НИИЭМ. В табл. 1 приведена классификация универсальных датчиков серии ДТХ в зависимости от величины измеряемого тока.

Рис. 2. Датчики тока для монтажа на печатную плату (а) и в транспортном варианте (б)
Из табл. 1 видно, что диапазон измерения тока датчиков серии ДТХ составляет от десятков миллиампер и до трех тысяч ампер. Наиболее популярными и часто используемыми являются датчики ДТХ-50 ÷ ДТХ-200 (рис. 2, а). Такие модули имеют минимальные размеры, массу и монтируются, как правило, на печатной плате. Для этого служат выводные ножки датчика, которые впаиваются в металлизированные отверстия печатной платы и изготовлены со стандартным шагом 2,5 мм. Одновременно выводные ножки являются и элементами крепежа датчика. При необходимости использования датчиков ДТХ в более жестких условиях, связанных с внешними механическими воздействиями, предусмотрена более жесткая конструкция датчика (ДТХ-Т на рис. 2, б). Электрическое соединение датчика ДТХ-Т осуществляется с помощью разъема.

Таблица 2. Основные технические характеристики выпускаемых датчиков измерения переменного тока ДТТ

Выходной сигнал стандартного датчика ДТХ или ДТХ-Т – токовый и строго пропорционален мгновенному значению измеряемого тока. Однако по требованию заказчика электронная схема датчика легко трансформируется, и тогда датчик может измерять действующее значение тока (TRUE-RMS) либо обладает стандартным токовым выходом 4–20 мА (0–20 мА). Это создает дополнительные удобства при использовании датчиков в системах автоматизации или связи.
Из табл. 1 видны основные преимущества датчиков ДТХ и ДТХ-Т: высокая точность измерений (до 1%), гальваническая развязка, малые габаритно-массовые размеры и температурный дрейф характеристик. Диаметр отверстий под токовую шину колеблется от 10 мм (ДТХ-50) и до 40 мм (ДТХ-3000).
Таблица 3. Основные технические характеристики выпускаемых датчиков напряжения постоянного и переменного токов (ДНХ, ДНТ)

Рис. 3. Конструкция датчиков напряжения ДНХ (а)и ДНТ (б)

Датчики измерения переменного тока
Датчики переменного тока серии ДТТ можно рассматривать как частный случай универсальных датчиков ДТХ. Анализ рынка показывает, что примерно в 50% случаев потребителям необходимо измерять только переменные токи. Причем в большинстве случаев это токи синусоидальной формы промышленной частоты
50 Гц. Именно для таких измерений разработана серия датчиков ДТТ, конструктивно выполненных в корпусах ДТХ, однако имеющих более дешевую электронную начинку (табл. 2). Цена таких датчиков приблизительно в 1,5 раза ниже, а уровень технических характеристик весьма высок. Датчики ДТТ могут работать в широком температурном диапазоне от –40° до 80°С с минимальной температурной погрешностью, линейность амплитудно-частотной характеристики не хуже 1% в диапазоне частот от 20 до 10 кГц. Кроме того, потребитель сам выбирает, с каким выходным сигналом датчика ему удобно работать: это может быть потенциальный сигнал или токовый выход 4–20 мА (0–20 мА).

Рис. 4. Внешний вид разъемных датчиков тока под плоскую (а) и круглую (б) токовые шины

Датчики измерения напряжения
Если измеряемое напряжение цепи превратить в ток (для этого достаточно использовать токозадающее сопротивление), то величина этого тока будет пропорциональна напряжению в измерительной цепи. Именно этот принцип лежит в основе работы датчиков напряжения, а наличие в их конструкции датчика Холла обеспечивает гальваническую развязку силовых цепей и цепей контроля.
В табл. 3 приведены основные технические характеристики датчиков измерения напряжения постоянного тока (ДНХ) и датчиков напряжения переменного тока (ДНТ). Конструкция датчиков напряжения представлена на рис. 3. Датчик напряжения может монтироваться на печатную плату, а токозадающее сопротивление подключается одним концом к измерительной цепи, а вторым – к винтовому выводу датчика (рис. 3, а). Второй винтовой вывод датчика соединяется с измерительной цепью. В ряде случаев более удобным является размещение датчика на DIN-рейке. Для этих целей существует специальная переходная планка. В ряде случаев более удобным является клеммное устройство датчика напряжения (рис. 3б). Такой датчик напряжения имеет возможность непосредственного монтажа на DIN-рейке.

Читайте также:  Что такое запирающее напряжение фотоэффект

Рис. 5. Внешний вид токовых клещей-адаптеров (а), базовой модели клещей (б) и клещей для измерения больших токов (в)
Датчики напряжения позволяют контролировать постоянное и переменное напряжение до 1000 В в широком температурном диапазоне. Электронная схема датчика преду­сматривает получение выходного сигнала в виде напряжения или в виде токового сигнала 4–20 мА (0–20 мА). Так, например, датчик ДНХ-03 (табл. 3) предназначен для преоб­разования входного постоянного, импульсного напряжения положительной полярности в стандартное (мгновенное) значение токового выхода 4–20 мА. А модификация этого же датчика ДНХ-03 RMS преобразует входное напряжение в действующее выпрямленное значение стандартного токового выхода 4–20 мА. Питание датчика ДНХ-03 осуществляется по токовой петле 4–20 мА, а монтаж – на DIN-рейку.
Линейка датчиков напряжения предусматривает также модификации более дешевых датчиков для контроля только переменного напряжения (ДНТ-05 – в табл. 3). В этом случае датчик ДНТ-051 можно использовать для работы в однофазных цепях, а датчик ДНТ-053 – предназначен для работы в 3-фазных цепях и содержит в одном корпусе три независимых, гальванически изолированных канала, каждый из которых идентичен датчику ДНТ-051. Датчик напряжения ДНТ-05 преобразует входное напряжение в средневыпрямленное значение выходного тока, проградуированное в среднеквадратических значениях.

Разъемные датчики тока
Большое количество модификаций датчиков обеспечивает свободу выбора пользователям этих приборов. Однако существует целая отрасль измерений, которая принципиально не может использовать вышеописанные стационарные датчики. Это касается вопросов мониторинга токовых цепей, которые давно собраны и функционируют. Кроме того, целый ряд производств с непрерывным циклом работы не допускает длительного отключения токовых цепей и переустановки оборудования. Для таких случаев незаменимыми оказываются разъемные датчики тока серии ДТР-01 и ДТХ-Ж (табл. 1).
Основой таких датчиков является разъемный магнитопровод, позволяющий монтировать датчики непосредственно на токовой шине, без разрыва последней и с гальванической изоляцией измеряемого тока от измерительных цепей. При необходимости датчики можно закрепить и на DIN-рейке.
При протекании измеряемого тока по шине, охватываемой магнитопроводом, в обмотке датчика наводится ток, пропорциональный измеряемому току. Выходной сигнал с обмотки подается либо на выпрямитель (детектор) амплитудных значений (маркировка датчика ДТР-01), либо на детектор истинных среднеквадратичных значений (ДТР-01 RMS). Напряжение постоянного тока с выхода детектора преобразуется в сигнал интерфейса «токовая петля 4–20 мА».
Разъемные датчики тока относятся к числу последних разработок НИИЭМ и на сегодняшний день освоено производство только двух модификаций датчиков, внешний вид которых представлен на рис. 4. Датчик ДТР-01 рассчитан для монтажа на круглой шине и предназначен для измерения токов в диапазоне от 5 до 300 А с допустимой перегрузкой по входному току в 1,5 раза. Разъемная конструкция датчика ДТХ-1000Ж, ДТХ-1500Ж или ДТХ-3000Ж позволяет закрепить его на плоской шине. Соответственно номинальный измеряемый ток у этих датчиков 1000, 1500 или 3000 А.

Клещи электроизмерительные
Описанная выше конструкция разъемных датчиков позволяет закрепить их непосредственно на шине без разрыва токовой цепи. Дальше такие датчики функционируют как обычные стационарные приборы. В то же время существует целый ряд задач, которые требуют частых разовых измерений, причем в различных, иногда труднодоступных участках токовых цепей. И часто качество технологического процесса зависит от точности и своевременности этих токовых измерений. Вот для решения таких задач и разрабатывались клещи электроизмерительные серии КЭИ, основные технические характеристики которых приведены в табл. 4.
Токовые клещи являются автономным контрольным прибором (питание от 2 пальчиковых батареек), предназначенным для измерения действующего значения постоянного и переменного токов без разрыва силовой цепи. Клещи КЭИ введены в Государственный реестр СИ РФ, сертифицированы и выпускаются в различных модификациях (табл. 4).

Базовая модель клещей
КЭИ-0,6М – это интеллектуальный прибор, в конструкции которого используется микроконтроллер с электрически программируемым ПЗУ (EEPROM). Благодаря этому клещи кроме ряда стандартных функций (измерение постоянного и переменного токов), содержат еще и ряд функций мультиметра. Они могут использоваться для измерения напряжения постоянного и переменного токов до 600 В, для измерения сопротивления цепи до 2000 Ом и измерения температуры окружающей среды. Выбор пределов измерений, обнуление шкалы в клещах производятся автоматически. Кроме того, клещи КЭИ содержат ряд сервисных функций: функцию удержания («память») измеренного значения, способны работать в режиме поиска min или max значения тока за измеряемый промежуток времени. Функция энергосбережения («сон») позволяет свести к минимуму энергозатраты, когда клещи находятся в пассивном режиме (не работают). Малые габаритно-массовые размеры и различный диаметр отверстия под токовую шину создают дополнительные удобства для потребителей. Отечественные клещи марки КЭИ выгодно отличает возможность работы с ними при отрицательных температурах окружающей среды до –20°С.

Рис. 6. Датчик больших токов ДБТ, смонтированный на шинопроводе электролизера алюминия

Из широкого перечня предлагаемых сегодня клещей необходимо выделить модификацию этих приборов для измерения больших токов до 3 кА (КЭИ-3) и до 5 кА (КЭИ-5, рис. 5, в). Диаметр отверстия клещей под токовую шину с измеряемым током до 5000 А составляет 160 мм. Для сравнения эти клещи представлены на одном рисунке рядом со своим собратом – это клещи-адаптер (рис. 5, а), предназначенные для измерения постоянных и переменных токов без индикации измеренных значений на дисплее. Кроме отсутствия ЖКИ, клещи-адаптер отличаются упрощенной электрической схемой и, следовательно, меньшей ценой. В то же время сохраняется возможность выбора таких клещей с размахом губок под токовую шину от 20 и до 64 мм для измерения токов от 20 и до 1500 А.

Датчики измерения мощности
Логическим продолжением описанных выше приборов является датчик измерения мощности ДИМ, реализующий формулу измерения мощности P=I∙U. Датчик ДИМ предназначен для преобразования активной мощности, потребляемой нагрузкой в цепях переменного тока частоты 50 Гц и постоянного тока в пропорциональный сигнал токового интерфейса 0–20 мА или 4–20 мА, гальванически изолированного от измерительных цепей.
Диапазон мощностей, измеряемых датчиками ДИМ, составляет от 5 до 200 кВт. При этом диапазон входных напряжений колеблется от 20 до 380 В, а диапазон входных токов составляет от 20 до 600 А. Коэффициент мощности (Cos Ψ) датчика ДИМ на частоте 50 Гц составляет 0,3÷1, основная приведенная погрешность ± 2%.
Учитывая, что датчик мощности ДИМ может быть изготовлен в одном из описанных ранее корпусов, можно варьировать диаметр отверстия под токовую шину или изготовить датчик мощности под плоскую токовую шину.
Питается датчик ДИМ от внешнего источника питания 13,5÷16,5 В, датчик выдерживает длительную перегрузку по входу до 120% от номинальных значений напряжения и тока.

Датчик больших токов ДБТ
Отдельного описания заслуживает датчик ДБТ, на рис. 6 представленный уже в сборе на токовой шине ванны электролиза алюминия.
Конструктивно датчик больших токов ДБТ состоит из двух блоков: измерительного контура и блока питания. Разъемный измерительный контур массой до 40 кг предназначен для монтажа непосредственно на токоведущей шине. Размеры внутреннего окна контура могут составлять 400х400 мм. Удобство монтажа датчика без разрыва токовой шины – это только одно из преимуществ датчика ДБТ по сравнению с традиционно используемыми шунтами. Электрическая связь между измерительным контуром и блоком питания и индикации осуществляется с помощью кабеля длиной до 5 метров. Блок питания и индикации смонтирован в удобном переносном корпусе и питается от однофазной промышленной сети переменного тока 220 В (50 Гц) ±10%. Блок обеспечивает измерительный контур необходимым питанием и формирует выходной сигнал стандартной токовой петли 0–5 мА. Основная приведенная погрешность датчика составляет 0,4%. Датчик ДБТ полностью сохраняет работоспособность при 1,5-кратной перегрузке измеряемого тока.
Датчик больших токов ДБТ реализует тот же принцип работы датчиков измерения тока, который описан выше. Однако области использования датчика ДБТ весьма специфичны: это энергоемкие производства медеплавильной промышленности, предприятия неф­тяной промышленности и электрометаллургии с высоким уровнем паразитных магнитных полей, неф­техимия и электроэнергетика. Это накладывает целый ряд дополнительных требований и ограничений на схемотехнику датчика, его конструктивные особенности. Учитывая тяжелые температурные условия работы прибора и высокий уровень электромагнитных помех, в датчике предусмотрена специальная система теплоотвода, повышены изолирующие свойства измерительного контура и предусмотрены меры электромагнитной защиты.
В настоящее время датчик больших токов выпускается в трех модификациях: на 8 кА (ДБТ-8), 15 кА (ДБТ-15) и на 25 кА (ДБТ-25). При измерении таких токов особенно остро встает проблема метрологии измерительного датчика. Для решения этой задачи и с целью максимального удобства использования такого прибора в конструкции датчика ДБТ предусмотрена специальная поверочная обмотка. С помощью этой обмотки можно производить настройку и периодическую поверку датчика ДБТ непосредственно на предприятии заказчика.
Не менее существенным преимуществом датчика больших токов является его цена: она приблизительно в 3–4 раза ниже существующих зарубежных аналогов.
Статья опубликована в журнале «ИСУП», № 5(35)_2011

Читайте также:  При перепаде напряжения сгорел телевизор что делать

Источник

ACS712 датчики тока

ACS712 датчики тока
Современные датчики тока подразделяются на следующие типы:
— резистивные датчики (токовые шунты);
— датчики тока на эффекте Холла;
— трансформаторы тока;
— волоконно-оптические датчики тока (ВОДТ) на эффекте Фарадея;
— пояс Роговского;
— токовые клещи
Каждый обладает своими достоинствами и недостатками, которые и ограничивают сферу его применения.

Токоизмерительные резисторы Трансформаторы тока Датчики Холла
Измеряемый ток Постоянный Переменный Постоянный и переменный
Диапазон измеряемого тока До 20 А До 1000А До 1000А
Погрешность измерений 1% 5% 10%
Гальваническая развязка нет есть есть
Вносимые потери есть есть Нет
Частотный диапазон 100 кГц 50/60/400 Гц 200 кГц
Относительная стоимость низкая высокая средняя
Требуют внешний источник питания нет нет да

Главным недостатком резистивного датчика тока является необходимость подключать датчик непосредственно в цепь измерения. Главным недостатком трансформатора тока является измерение только переменных токов промышленной частоты. Датчик тока на основе эффекта Холла обладает рядом преимуществ, которые заключаются в возможности измерения как постоянных, так и переменных токов, и малых размерах. К их главным достоинствам следует отнести отсутствие вносимых с систему потерь мощности, широкий диапазон частот. Недостатком является необходимость внешнего источника питания и зависимость от температуры.

Датчики тока Allegro Microsystems

Компания Allegro Microsystems специализируется на разработке и производстве аналого-цифровых силовых микросхем и датчиков тока на основе эффекта Холла. Для диапазона 5-200 А предлагаются интеллектуальные микросхемы, а для диапазона до 1000 А и выше – линейные микросхемы с дистанционным измерением тока. Датчики работают в расширенном диапазоне температур, что позволяет использовать их в жестких условиях эксплуатации.
Основными областями применения являются системы автомобильной и силовой электроники, промышленная автоматика, аппаратура общего применения.

Принцип работы

Принцип работы датчиков

Датчики состоят из очень точного линейного датчика Холла, интегрированного на кристалл микросхемы, и медного проводника, размещенного близко к кристаллу. Электрический ток, протекая через проводник, создает магнитное поле, которое фиксируется датчиком Холла и преобразуется в напряжение, пропорциональное значению входного тока.

Зависимость выходного напряжения датчика от тока

Корпуса датчиков

Для производства датчиков на 5-200 А применяется flip chip технология, которая предоставляет ряд значительных преимуществ для разработчика:
— повышенная чувствительность, датчик Холла расположен очень близко к проводнику тока
— высокая гальваническая изоляция, до 3600 В rms в течение 60 секунд
— низкое сопротивление первичной цепи, менее 1 мОм, снижение потерь мощности
— стандартные корпуса для поверхностного монтажа.

Корпус по технологии Flip Chip (вид сверху)

Датчики на диапазон 50-200 А выпускаются в корпусе собственной разработки – СВ. Этот корпус включает медный проводник и аналоговый датчик Холла и позволяет измерять постоянный ток до 200 А и импульсный до 1200 А. Датчики калибруются при производстве, выдерживают напряжение пробоя до 4800 В rms в течение 60 секунд, обеспечивают изоляцию до 700 В и усиленную изоляцию до 4500 В. Сопротивление проводника составляет 100 мОм, поэтому микросхемы имеют сверхнизкую потерю мощности при измерении максимального тока.

Корпус CB

Корпус датчиков

Термокомпенсация

В датчиках тока используется запатентованная технология цифровой термокомпенсации, которая позволяет значительно улучшить как погрешность чувствительности и выходного напряжения в рабочей точке. Оба параметра измеряются на этапе финального тестирования в двух режимах: при комнатной температуре и при 85…150°С. Эти данные хранятся в EEPROM памяти. В результате датчики Allegro имеют суммарную погрешность ±1% в диапазоне 25…150°С. Такая калибровка на последней стадии производства устраняет необходимость в температурной калибровке после монтажа на печатную плату.

Типовая схема датчика тока с термокомпенсацией

Применение датчиков тока в электроприводе

Датчики тока Allegro могут применяться в нескольких узлах электропривода благодаря наличию гальванической развязки и хорошим параметрам скорости dV/dt.
Они могу использоваться для измерения постоянного тока шины (1), тока фазы (2) или на тока нижнего уровня.

Применение датчиков тока в электроприводе

Гальваническая изоляция позволяет использовать датчики Allegro для измерения тока фазы двигателя напрямую. Это упрощает блок управления и уменьшает шумы. Датчики ACS710, ACS711 и ACS716 имеют выходы ошибки, которые можно использовать для обнаружения короткого замыкания или других явлений, вызванных высоким током.
Основные датчики тока для электропривода:

ACS710 Датчик тока 5В, 120 кГц с выходом ошибки, изоляция 3 кВ
ACS716 Датчик тока 3,3В, 120 кГц с выходом ошибки, изоляция 3 кВ
ACS722 Датчик тока 3,3В, 80 кГц с термокомпенсацией
ACS723 Датчик тока 5В, 80 кГц с термокомпенсацией
ACS726 Датчик тока с дифференциальным выходом с термокомпенсацией
ACS711 Датчик тока эконом-класса для измерения выходного тока плеча

Датчики тока в усилителях мощности

Правильное управление усилителем мощности в базовой станции или портативном радиоприемнике – основа для правильного компромисса между выходной мощностью и КПД.
Ток смещения – это ключевой параметр для контроля на большинстве выходных каскадов, поэтому компания Allegro предлагает несколько датчиков тока для решения данной задачи.

Применение датчиков в усилителях мощности

ACS711 Датчик тока 100 кГц в корпусе QFN/SOIC
ACS712 Датчик тока 80 кГц в корпусе SOIC

Преимущества датчиков тока Allegro

— возможность измерения постоянного тока, переменного тока и их комбинаций;
— малые потери энергии и, как следствие, малое выделение тепла, уменьшенные габариты и возможность контролировать большие токи;
— встроенная гальваническая развязка

Читайте также:  Регулятор напряжения генератора уаз хантер

Высокая точность, гальваническая изоляция измерительной схемы, термостабильность и малые габариты делают датчики хорошим решением для применения в преобразовательной технике, бытовой, автомобильной и промышленной электронике.

Источник

Датчики электрического тока

Глобальные тренды — спрос на снижение выбросов CO2, повышение интенсивности энергосбережения — приводят к необходимости сбалансированного потребления энергии, для чего большую помощь могут оказать электронные схемы управления процессами. Наиболее распространённые случаи — это оптимизация эксплуатационных характеристик аккумуляторов, контроль скорости вращения двигателей и переходных процессов в серверах, управление солнечными батареями. Для операторов таких систем важно, в частности, знать, какой ток протекает в цепи. Неоценимую помощь в этом могут оказать датчики тока.

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

Классификация и схемы подключения

Датчики тока предназначаются для оценки параметров постоянного и/или переменного тока. Сравнение выполняется двумя методами. В первом случае используется закон Ома. При установке шунтирующего резистора в соответствии с нагрузкой системы на нём создаётся напряжение, пропорциональное нагрузке системы. Напряжение на шунте может быть измерено дифференциальными усилителями, например, токовыми шунтирующими, операционными или разностными. Такие устройства используются для нагрузок, которые не превышают 100 А.

Измерение переменного тока выполняется в соответствии с законами Ампера и Фарадея. При установке петли вокруг проводника с током там индуцируется напряжение. Этот метод измерения используется для нагрузок от 100 А до 1000 А.

Схема описанных измерений представлена на рисунке:

Слева — измерение малых токов; справа — измерение больших токов

Измерение обычно производится при низком входном значении синфазного напряжения. При помощи чувствительного резистора датчик тока соединяется между нагрузкой и землей. Это необходимо, поскольку синфазное напряжение всегда учитывает наличие операционных усилителей. Нагрузка обеспечивает питание прибора, а выходное сопротивление заземляется. Недостатками данного способа считаются наличие помех, связанных с потенциалом нагрузки системы на землю, а также невозможность обнаружения коротких замыканий.

Для слежения работой мощных систем детектор присоединяют к усилителю между источником питания и нагрузкой. В результате непосредственно контролируются значения параметров, подаваемых источником питания. Это позволяет идентифицировать возможные короткие замыкания. Особенность подключения заключается в том, что диапазон синфазного напряжения на входе усилителя должен соответствовать напряжению питания нагрузки. Перед измерением выходного сигнала контролируемого устройства нагрузка заземляется.

Как функционирует датчик тока

Работа данного элемента включает следующие этапы:

  1. Измерение нагрузки в контролируемой схеме.
  2. Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
  3. Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
  4. Передача данных на панель управления.

Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:

  • Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
  • Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
  • В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
  • Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.

Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.

Практика применения

Чаще всего данные изделия используются как измерители в схемах токовых реле, которые управляют режимами работы различного электроприводного оборудования и предохраняют его от экстремальных ситуаций.

Токовые реле способны защитить любое механическое устройство от заклинивания или других условий перегрузки, которые приводят к ощутимому увеличению нагрузки на двигатель. Функционально они определяют уровни тока и выдают выходной сигнал при достижении указанного значения. Такие реле используются для:

  • Сигнала сильноточных условий, например, забитая зёрнами доверху кофемолка;
  • Некоторых слаботочных условий, например, работающий насос при низком уровне воды.

Чтобы удовлетворить требования разнообразного набора приложений, в настоящее время используется блочный принцип компоновки датчиков, включая применение USB-разъёмов, монтаж на DIN-рейку и кольцевые исполнения устройств. Это обеспечивает выполнение следующих функций:

  • Надёжную работу на любых режимах эксплуатации;
  • Возможность применения трансформаторов;
  • Регулировка текущих параметров, которые могут быть фиксированными или регулируемыми;
  • Аналоговый или цифровой выход, включая и вариант с коротким замыканием;
  • Различные исполнения блоков питания.

В качестве примера рассмотрим схему датчика тока для управления работой водяного насоса, обеспечивающего подачу воды в дом.

Кавитация — это разрушительное состояние, вызванное присутствием пузырьков, которые образуются, когда центробежный насос или вертикальный турбинный насос работает с низким уровнем жидкости. Образующиеся пузырьки затем лопаются, что приводит к точечной коррозии и разрушению исполнительного узла насоса. Подобную ситуацию предотвращает токовое реле.

Когда насос работает в нормальном режиме, и жидкость полностью перекрывает его впускное отверстие, двигатель насоса потребляет номинальный рабочий ток. В случае снижения уровня воды потребляемый ток уменьшается. Если кнопка запуска нажата, одновременно включаются стартёр M и таймер TD. Реле CD настроено на максимальный ток, поэтому его контакт при первоначальном запуске двигателя не будет замкнут. При падении силы тока ниже установленного минимума реле включается, а, после истечения времени ожидания TD, включается в его нормально замкнутый контакт. Соответственно контакты CR размыкаются и обесточивают двигатель насоса.

Применение такого детектора исключает автоматический перезапуск насоса, поскольку оператору необходимо убедиться в том, что уровень жидкости перед впускным отверстием достаточен.

Датчик тока своими руками

Если приобрести стандартный датчик (наиболее известны конструкции от торговой марки Arduino) по каким-то соображениям невозможно, устройство можно изготовить и самостоятельно.

Датчик тока фирмы Arduino. Стрелкой указан USB-разъём.

  1. Операционный усилитель LM741, или любой другой, который мог бы действовать как компаратор напряжения.
  2. Резистор 1 кОм.
  3. Резистор 470 Ом.
  4. Светодиод.

Общий вид устройства в сборе, сделанного своими руками, представлен на следующем рисунке. В данной схеме используется эффект Холла, когда разность управляющих потенциалов может изменяться при изменении месторасположения проводника в электромагнитном поле.

Источник