Меню

Что такое стабилизатор автопилот



Как устроен автопилот на современном самолете

— Ей, Cubertox, я слышал что современный лётчик летает «на руках» всего 5 секунд за полет?
-Да, это так.
-Да ладно, за что вам тогда столько денег платят?
-Черт побери, действительно за что?
Давайте разберем на примере одного из самых продвинутых в плане автоматизации самолетов — Airbus A320.

Прежде всего, данный пост является информационно-развлекательным, так что, постараемся избежать излишнего погружения в самолетные матаны, и наиболее простыми и доступными к пониманию словами разберем как же все таки происходит пилотирование современным самолетом с использованием автопилота?

-Аа, Cubertox, что за дела? Ты же обещал без матана, все так хорошо начиналось!
-Смотрите, суть этой схемы показать принципиальное устройство системы автоматического управления самолетом. Если не вдаваться в подробности то, информация от всех навигационных систем, систем управления двигателем, элеронами/стабилизатором, колесами, и даже принтером поступает в FMGS (Flight management guidance computer), который в свою очередь дает команду автопилоту.
Логично предположить, что при таком объеме поступающих данных, система может обеспечить управление самолетом в автоматическом режиме на всех этапах полета и при любых погодных условиях.
Так это или нет? Разберем в подробностях, по этапам полета.

Вот, вы загорелые, и слегка отдохнувшие в DutyFree, наконец добрались до прохладного салона самолета, и насколько это возможно с шагом в 30см между кресел, комфортно разместились на своих местах, согласно купленным билетам. Первый этап полета это буксировка и запуск двигателей.
Пока трудолюбивый тягач толкает самолет подальше от терминала, освобождая пространство для реактивной струи от самолетных двигателей, экипаж не теряя времени даром, приступает к запуску двигателей. И тут, Airbus предусмотрел первого электронного помощника, а именно FADEC (Full authority digital engine control system), который превращает процедуру запуска из первой картинки во вторую.

Дело в том, что само по себе устройство турбореактивного двигателя являет собой невероятно сложную систему, с огромным давлением и температурой внутри и подаваемым керосином снаружи. Газодинамическую устойчивость работы силовой установки, а так же надежный запуск и работу систем двигателя, как раз и обеспечивает FADEC, предоставляя летчикам контролировать параметры работы двигателя, не вмешиваясь непосредственно в управление его системами.
Удобно не правда ли? Внедрение таких систем, позволило на рубеже 80х-90х годов сократить экипаж с четырех до трех человек, навсегда оставив в прошлом профессию Бортинженера.
Вслед за запуском, идет этап руления. Эта часть полета.
— хе-хе езда по аэродрому еще не полет
— нет, уважаемый Трололоша, все что следует за запуском двигателя, в авиации считается полетом
Итак, часть полета, которая называется рулением лишена автоматизации чуть более чем полностью (если так еще уместно выражаться в 2018м). Поездка по кочкам, объезд ям и канав осуществляется летчиками в ручном режиме, так что теперь, уважаемые пассажиры, вы знаете кого благодарить, если вас начало тошнить еще до взлета.

Взлет.
Взлетом в авиации принято считать момент от начала разбега по взлетно посадочной полосе, до момента достижения безопасной высоты в 10м.
-лол кек, 10 метров уже безопасная высота?
-именно так, понятие «безопасной высоты взлета» отдельная тема для обсуждения, не входящая в определение «поменьше матана»
Может-ли современный пассажирский самолет выполнить взлет самостоятельно, без помощи летчиков? Ответ — нет. Все взлеты всегда выполняются в ручном режиме, отчасти Airbus это аргументирует фразой «Due to malfunctions or conditions that give unambiguous indications that the aircraft will not fly safely» что может вольно трактоваться как «в связи с отказами или условиями которые могут нарушить безопасность взлета»
Что произойдет если на полосе во время взлета вдруг окажется крокодил?
Или автомобиль незадачливого водителя?
Или другой самолет, случайно перепутавший маршрут руления?
Все это реальные случаи которые могли стать причиной катастрофы, но благодаря грамотным действиям экипажа обошлось лишь анекдотом.

Но вот, земля стала удаляться от нас, и теперь можно расслабиться, включить наконец, автопилот и приступить к набору высоты. Да, на самолетах Airbus, автопилот может включаться на высоте более 30м или через 5 секунд после отрыва от земли. Работа летчиков с автопилотом при наборе высоты напоминает управление круиз контролем автомобиля при движении по центру города. Необходимо постоянно указывать самолету требуемую скорость, направление и высоту полета через FCU, крутя ручки как безумный шашлычник крутит шампуры. Выполнять процедуры шумопонижения на местности, обходить опасные метео явления, работать с механизацией крыла и успевать отвечать службам управления воздушным движением по радиосвязи.

В общем пока самолет не наберет примерно километр высоты, летчикам запрещено даже разговаривать друг с другом на любые темы, кроме стандартных процедур взлета. И все становится еще веселее, если по каким-то причинам нет возможности использовать автопилот, и в добавление ко всему вышеперечисленному приходится вертеть штурвалом как безумный пират в штормовую погоду.
Но вот безумная горячка набора высоты сменяется относительным затишьем полета на эшелоне. Самолет самостоятельно следует по маршруту, в определенных пределах соблюдает скоростные ограничения, и следит за точностью навигационных параметров. Летчики в этот момент контролируют работу систем, расход топлива, принимают пищу, или если полет слишком утомительный, один из летчиков может поспать 40 минут на рабочем месте, передав управление и контроль соседу по кабине. Горизонтальный полет, это как раз та часть полёта, на которой запрещён полет без использования автоматики. Где заданные параметры, такие как скорость и высота автоматика выдерживает довольно точно.
Таким образом подумали и начальники от авиации и указали что использование автопилота на высоте более 8,5 тысяч метров (Fl290) — обязательно.
-А что же делать если автопилот сломается?
-Необходимо освободить воздушное пространство в кратчайшие сроки.

Специфический авиационный юмор на любителя.

Логическим завершением каждого полета является снижение и заход на посадку.
Наравне с взлетом, этот этап наиболее ответственный и опасный, по статистике 80% всех авиапроисшествий случаются именно на взлете или посадке. И в целях сокращения этой статистики призван на помощь «его величество Autoland» или говоря по простому — режим автоматической посадки.
Постепенно приближаясь все ближе и ближе к земле, пилоты крутят шампуры на FCU и вот уже в посадочной зоне аэропорта, огни которого манят так пленительно любого путника после долгой дороги.

И казалось бы, можно расслабится, отдавшись на волю автоматики, лениво следя за тем, как умный самолет везет тебя домой. Но что это?

А это всего-лишь не полный список требований к аэропорту, погоде и самолету, для того чтобы он мог безопасно совершить Autoland.
-A что если сегодня ветрено?
-Не, Autoland нельзя.
-A что если ВПП немного под уклоном?
-Не, Autoland нельзя.
-А что если аэродром в горах?
-Не, Autoland нельзя.
-Так а зачем он нужен?
Вот тут то и собака зарыта! Autoland применяется только в условиях близких к идеальным, или при сильном тумане. Ну положим, в тумане — понятно, нет времени на пилотирование самолета, так как ничего не видно, ни огней ВПП, ни других ориентиров. А зачем в штиль-то его использовать? -Если экипаж устал.
Да, от самолетного бортпитания и 45 рейсов в месяц может устать даже самый крепкий летчик, и его силы могут иссякнуть в самый неподходящий момент. Как запасной вариант второй пилот, может воспользоваться Autoland’ом, для облегчения пилотирования в одиночку.

Читайте также:  Стабилизатор ekf симисторный снс1 10000

Но как на практике происходит посадка с Autoland’ом? Летчикам можно просто откинуться на спинку кресла и наблюдать как самолет все сделает сам?

Как следует из данного туториала, заход на посадку в автоматическом режиме, это практически такой-же заход как и в ручном, с одним маленьким исключением. Пилот управляет самолетом кнопками а не посредством штурвала (сайдстика, джойстика, как хотите).

Таким образом, напрашиваются следующие выводы: Системы современных самолетов не могут с необходимой точностью предвидеть опасность, и принять верное для данной ситуации решение.
Автопилот используется на тех этапах полета, на которых характерно отсутствие внезапной опасности, ибо построение алгоритмов действия, в аварийной ситуации, при комбинации возможных отказов оборудования и внешних условий, невыполнимая задача для таких сложных систем как самолет.

Итак
1. Правда-ли что пилоты используют автопилот 99% времени полета?
-Да это так.
2. Правда-ли что автопилот может самостоятельно выполнять всю работу за летчика?
-Нет это не так, автопилот управляется летчиками.
3. Правда ли что вам так много платят? Со всеми проводницами переспал? Часто летаешь пьяным?
-На эти и многие другие темы мы поговорим в следующих постах.

Источник

Система управления стабилизатором

Привет студент

Конструкция основных частей оперения — стабилизатора и киля — обычно подобна. Одинаковы по конструкции также рули высоты и рули направления. На крупных самолетах стабилизаторы выполняются, как правило, разъемными. Киль может быть изготовлен за одно целое с фюзеляжем или в виде отдельной части. Каркас оперения современных самолетов, как правило, выполняется металлическим. Обшивка киля и стабилизатора обычно жесткая (дюралюминиевая). Рули самолетов малых дозвуковых скоростей обшиваются полотном, что уменьшает их вес и упрощает конструкцию. На самолетах больших скоростей обшивка рулей так же, как и каркас, металлическая.

Киль и стабилизатор.

На небольших самолетах киль и стабилизатор делают чаще всего двухлонжеронными. На тяжелых самолетах киль и стабилизатор обычно моноблочной конструкции с работающей обшивкой (рис. 59).

Основные элементы силового набора (лонжероны, стенки, стрингеры, нервюры) конструктивно выполняются так же, как у крыла, и выполняют те же функции, т. е. изгиб воспринимается поясами лонжеронов, стрингерами и частично обшивкой; поперечная сила воспринимается стенками лонжеронов; кручение — замкнутым контуром; обшивка — стенки лонжеронов. Стабилизатор и киль крепятся к фюзеляжу при помощи узлов на лонжеронах и шпангоутах. Для крепления (подвески) рулей стабилизатор и киль имеют специальные кронштейны с универсальными и одноосевыми шарнирами. На рис. 60 показан типовой узел подвески руля.

Рули и элероны (рули крена).

Рули и элероны, как правило, выполняются однолонжеронными с набором стрингеров и нервюр.

Для увеличения жесткости передней части руля иногда устанавливается стенка (вспомогательный лонжерон).

В современном самолетостроении используют три характерных типа рулей для самолетов с различной скоростью полета: руль с трубчатым лонжероном, руль с жестким носком и руль с жесткой обшивкой для самолетов больших скоростей. В руле любого типа набор нервюр собирает воздушную нагрузку с поверхности руля и передает ее на лонжерон и контур кручения, а также на жесткую заднюю кромку.

В первой схеме нервюры руля всю собранную ими нагрузку передают только на лонжерон, а поскольку он трубчатый, то может успешно работать и на изгиб, и на кручение.

Во второй схеме силы с нервюр передаются на стенку балочного лонжерона, загружая его поперечным изгибом, а момент с нервюр передается на контур, образованный стенкой лонжерона с жестким носком. Этот контур и работает на кручение. В этой схеме функции распределяются следующим образом: поперечный изгиб воспринимается балочным лонжероном, а кручение — контуром силового носка.

В третьей схеме (рис. 61) подобное же распределение функций, но крутящий момент передается здесь на весь контур обшивки, а не только на носок.

В соответствии с той или иной схемой передачи сил осуществлены силовые связи элементов руля между собой. Для рулей первой схемы нервюры связаны только с лонжероном заклепками по его окружности.

Рули второй и третьей схем имеют связь нервюр со стенками лонжеронов и контуром кручения. Эта связь обеспечивается заклепками, болтами и иногда клеем.

В целях лучшего использования обшивки для восприятия изгибающего момента и сохранения формы профиля применяют рули с пенопластовым или сотовым заполнителем. Они обладают высокой жесткостью при малом весе.

(рис. 62) представляют собой вспомогательную рулевую поверхность, устанавливаемую на задней части основного руля. С помощью триммеров обеспечивается балансировка самолета относительно всех его осей при изменении центровки и режима полета. Отклонение триммера производится независимо от отклонения руля обычно при помощи специальных необратимых самотормозящихся электромеханизмов, включаемых в нужный момент пилотом двусторонним нажимным переключателем. Триммер руля высоты, как правило, управляется при помощи тросового механического устройства. Сущность работы триммера можно пояснить следующим примером. При отказе одного из двигателей самолета появляется разворачивающий момент, противодействие которому может быть создано отклонением руля поворота. Длительный полет самолета с отклоненным рулем утомителен для пилота. Отклоняя триммер в сторону, противоположную отклонению руля, нагрузку, передающуюся на ноги пилота, можно уменьшить до сколько угодно малой величины. Компенсирующий момент от триммера, противодействующий шарнирному моменту, возникает вследствие большого плеча силы, приложенной к триммеру, хотя сама сила и невелика. Величину шарнирного момента при этом можно записать в следующем виде:

где Rp и Rтр — аэродинамические силы, приложенные соответственно к рулю и триммеру; а и Ь — плечи этих сил относительно оси вращения руля.

При наличии отклоняемых стабилизатора и киля надобность в установке триммера на этих поверхностях отпадает. Триммер, состоящий из диафрагмы, лонжерона и обшивки, делается цельнометаллическим. Крепление к рулю — шарнирное.

Используемая литература: «Основы авиации» авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

Система управления стабилизатором самолета.

На самолете применен переставляемый стабилизатор, что позволяет эксплуатировать самолет с более передней центровкой на взлете и посадке при сохранении требуемых запасов углов отклонения руля высоты и без увеличения усилий на штурвале. Система управления стабилизатором изменяет угол положения стабилизатора относительно строительной горизонтали фюзеляжа (СГФ) от —1°30′ до —7°.

Читайте также:  Стабилизаторы ресанта 20000 квт

В процессе эксплуатации применяются два положения стабилизатора: основное полетное) —1°30′ и взлетно-посадочное — 7 °.

Система управления стабилизатором 2 (см. рис. 8.18, г) подобна рассмотренным в гл. 5 и на рис. 8.14, г и включает винтовой механизм 3 с двумя гайками, вращающимися от гидроприводов 1. Верхняя гайка связана со стабилизатором и при ее вращении и перемещении на винте 3 стабилизатор будет отклоняться. Стабили­зация самолета управляемым стабилизатором производится при нейтральном положении РВ.

В системе управления PH (см. рис. 8.18, б), состоящего из двух секций, каждая из которых управляется тремя ГУ: 1 — педали; 2 — РМ АП; 3 — винтовые механиз­мы; 4 — ЗМ; 5 — МТЭ; 7 — качалка; 8 — центрирующая пружина; 9 — механизм ограничения хода педалей с электроприводом В отличие от агрегатов, включенных в канал продольного управления, в систему управления PH включен еще демпфер рыскания 6 для улучшения боковой устойчи­вости самолета

1.Конструкция вертикального оперения самолета. Назначение и требования предъявляемые к нему. Геометрические параметры вертикального оперения.

Оперение — это несущие поверхности, являющиеся органами устойчивости и управляемости самолета. Оно состоит из горизонтального и вертикального оперения.

Конструкции стреловидного ВО обычного и Т-образного опере­ния приведены. ВО состоит из киля и PH.. Он состоит из лонжеронов и, бортовой, торцевой, силовых и обычных 29 нервюр, двух панелей 4, съемного носка 23, концевого обтекателя 27. На рис. 5.13, а соответственно обозначены: лонжероны 3 и 7, бортовая нервюра 8, корневая нервюра /, обычные нервюры 2, панели 5, 4 и 6 — носок и законцовка киля.

Конструкция силовых элементов обоих килей типовая, однако из-за дополни­тельных нагрузок на киль Т-образного оперения от ГО все его силовые элементы усилены (увеличены сечения поясов лонжеронов, стенки усилены накладками и стойками по длине лонжеронов и др.). В корневой части лонжеронов на болтах установлены штампованные из стали стыковые узлы 21 (см. рис. 5.10, г) для крепления киля к фюзеляжу .

Вертикальная аэродинамическая поверхность (поверхности) летательного аппарата, обеспечивающая его путевую устойчивость и управляемость. На большинстве самолётов В. о. располагается в плоскости симметрии на верху хвостовой части фюзеляжа. Основная, передняя, как правило неподвижная, часть В. о. (киль) обеспечивает путевуюустойчивость летательного аппарата. На задней части киля обычно помещают подвижную аэродинамическую поверхность — руль направления (РН). РН (см. Рули управления) обеспечивает путевую управляемость и балансировку летательного аппарата относительно вертикальной оси, например, при полёте с боковым ветром или с отказавшим двигателем. При переходе от дозвуковых к сверхзвуковым скоростям полёта аэродинамическая эффективность несущих поверхностей (как и эффективность органов управления) существенно снижается, в связи с чем на некоторых маневренных сверхзвуковых самолётах используют целиком поворотное В. о. (без РН).

1- форкиль; 2 — зализ; 3 — проблесковый маяк; 4—киль; 5 — руль направления; б — трим­мер руля направления; 7 — сервокомпенсатор; 8 — триммер руля высоты; 9 — руль высоты; 10 — стабилизатор; 11 —- фальшкиль

2.Проводка управления, Конструкция элементов проводки управления.

Передача управляю­щих сигналов от летчика или автоматической системы управления к элементам системы управления и, в конечном счете, к органам управления самолета произво­дится с помощью механической или электрической проводки управления.

Электрическая проводка управления представляет собой совокупность источников питания, электропроводки, коммутационных и других устройств, обеспечивающих передачу управляющих сигналов от летчика или автоматической системы управления к органам управления. Ранее такая проводка достаточно широко применялась для управления триммерами и включения электро­механизмов различных агрегатов автоматики

Механическая проводка управления представляет собой совокупность элементов, обеспечивающих дистанционную передачу сигналов от летчика или автоматической системы управления к органам управления. В систе­мах управления с гидроусилителями мощности (бустерами) участок механической проводки управления от РУ до гидроусилителя составляет ее несиловую часть с относительно небольшим уровнем нагрузок (силы трения в проводке управления и силы от загрузочного механизма), а от гидроусилителя до органа управления — силовую часть с нагрузками в десятки тысяч ньютонов. Механическая дистанцион­ная передача сигналов в системе управления может осуществляться гибкой, жес­ткой или смешанной проводкой.

Гибкая проводка обеспечивает передачу управляющих сигналов посред­ством возвратно-поступательных перемещений тросов, стальных проволок, лент или цепей. Такая проводка для отклонения органов управления вверх или вниз, влево или вправо состоит из двух ветвей ввиду того, что каждая из них может работать только на растяжение.

Жесткая проводка обеспечивает передачу управляющих сигналов посред­ством возвратно-поступательных или вращательных движений тяг.

На современных самолетах наибольшее распространение получили жесткие проводки управления с поступательным движением тяг. Тяги выполняют в виде тонкостенных дюралевых, стальных или титановых труб длиной не более двух

3.Система кондиционирования воздуха в кабине самолета. Назначение и требования, предъявляемые к системе.

Система кондиционирования самолета предназначена для обогрева (охлаждения) и вентиляции кабины экипажа и пассажирского салона, а также для поддержания в гермокабине заданного давления и состава воздуха. Кроме того, система кондиционирования обеспечивает подачу воздуха: — к стартерам при запуске двигателей; — в противообледенительную систему самолета; — на обогрев ВСУ и механизма перестановки стабилизатора; — на охлаждение оборудования; — на наддув гидробака; — и к другим потребителям. Воздух для системы кондиционирования отбирается от компрессоров двигателей, от вспомогательной силовой установки или от наземного кондиционера.

Система кондиционирования воздуха обеспечивает наддув, вентиляцию и обогрев кабин при отборе воздуха как от трех, так и от двух двигателей.

Воздухообмен за один час полета при работе трех двигателей — 16÷17-кратной, а при работе двух двигателей — примерно 15-кратный.

Воздухо-воздушные радиаторы 22, турбохолодильники и распределители воздуха образуют левый и правый основные узлы охлаждения.

От основных узлов охлаждения начинаются магистрали охлажденного воздуха, на которых установлены влагоотделители 28 и глушитель шума 27. После глушителя воздух разделяется на три основных потока. Первый по магистрали 12 направляется в кабину экипажа, где подводится к патрубкам обдува ног пилотов 1 и бортинженера 4, к насадкам индивидуальной вентиляции 2, к боковым патрубкам 71 с

ручными заслонками для регулирования расхода воздуха, в линию обдува остекления фонаря кабины экипажа 70 и в линию общей вентиляции и обогрева кабины экипажа, которая заканчивается ручной заслонкой 7. Второй поток поступает в коробы 56, 64 индивидуальной вентиляции пассажирских салонов, а также в воздухопроводы 57, 65 вентиляции верхней части салонов. Обратные клапаны 24 служат для перекрытия магистралей в случае разгерметизации системы, находящейся за герметической кабиной в носках крыла. Во время работы двигателей обратный клапан 43 перекрывает воздухопровод отбора воздуха 44 от ВСУ.

Читайте также:  Стабилизаторы тучных клеток назначают для

Воздух для системы кондиционирования отбирается от компрессоров двигателей, от вспомогательной силовой установки или от наземного кондиционера. В состав СКВ обычно входят: тепло и массообменные агрегаты (теплообменники, турбохолодильники, осушители, увлажнители и т.п.); аппаратура управления и автоматического регулирования (датчики, преобразователи, блоки управления, запорные, регулирующие краны, заслонки); система распределения воздуха (трубопроводы, короба, клапаны); аппаратура контроля СКВ и сигнализации отказов (датчики, преобразователи); вспомогательное оборудование (озонаторы, глушители, вентиляторы, поглотители, фильтры и т.д.).

Источник

Стабилизатор самолета. Общее устройство и управление самолетом

Что нам известно про стабилизатор самолета? Большинство обывателей просто пожмет плечами. Те, кто в школе любил физику, возможно, смогут сказать пару слов, но, конечно, на этот вопрос, скорее всего, смогут наиболее полно ответить специалисты. Между тем, это очень важная часть, без которой полет фактически невозможен.

Принципиальное устройство самолета

Если попросить нарисовать нескольких взрослых авиалайнер, картинки будут примерно одинаковыми и будут различаться лишь в деталях. Схема самолета, скорее всего, будет выглядеть следующим образом: кабина, крылья, фюзеляж, салон и так называемое хвостовое оперение. Кто-то нарисует иллюминаторы, а кто-то забудет о них, возможно, будут упущены еще какие-нибудь мелочи. Возможно, художники даже не смогут ответить, для чего необходимы те или иные детали, мы просто не задумываемся об этом, хотя видим самолеты довольно часто, как вживую, так и на картинках, в кино и просто по телевизору. И это на самом деле и есть принципиальное устройство самолета — остальное, по сравнению с этим, лишь мелочи. Фюзеляж и крылья служат собственно для подъема авиалайнера в воздух, в кабине производится управление, а в салоне находятся пассажиры или груз. Ну, а как насчет хвостового оперения, для чего же оно нужно? Не для красоты ведь?

Хвостовое оперение

Те, кто водит машину, отлично знают, как поехать в сторону: нужно лишь повернуть руль, вслед за которым будут двигаться и колеса. Но самолет — совсем другое дело, ведь в воздухе нет никаких дорог, и для управления нужны какие-то другие механизмы. Здесь в дело вступает чистая наука: на летящую машину действует большое количество различных сил, и те, что полезны, усиливаются, а остальные минимизируются, в результате чего достигается некий баланс.

Вероятно, почти каждый, кто видел в своей жизни авиалайнер, обращал внимание на сложную конструкцию в его хвостовой части — оперение. Именно эта сравнительно небольшая часть, как это ни странно, управляет всей этой гигантской машиной, заставляя ее не только поворачивать, но и набирать или сбрасывать высоту. Оно состоит из двух частей: вертикальной и горизонтальной, которые, в свою очередь, тоже делятся надвое. Руля тоже два: один служит, чтобы задавать направление движения, а другой — высоту. Кроме того, есть и часть, с помощью которой достигается продольная устойчивость авиалайнера.

Кстати, стабилизатор самолета может располагаться не только в его задней части. Но подробнее об этом чуть позже.

Стабилизатор

Современная схема самолета предусматривает множество деталей, необходимых для поддержания безопасного состояния авиалайнера и его пассажиров на всех этапах полета. И, пожалуй, главной из них является стабилизатор, расположенный в задней части конструкции. Он представляет собой, по сути, всего лишь планку, поэтому удивительно, как такая сравнительно небольшая деталь может вообще каким-либо образом влиять на движение огромного авиалайнера. Но он в самом деле очень важен — когда происходит поломка этой части, полет может закончиться весьма трагично. Например, согласно официальной версии, именно стабилизатор самолета стал причиной недавнего крушения пассажирского «Боинга» в Ростове-на-Дону. По мнению международных экспертов, рассогласованность в действиях пилотов и ошибка одного из них привели в действие одну из частей оперения, переведя стабилизатор в положение, характерное для пике. У экипажа уже просто не получилось ничего предпринять, чтобы не допустить столкновения. К счастью, самолетостроение не стоит на месте, и каждый следующий полет дает все меньше пространства для человеческого фактора.

Функции

Как очевидно из названия, стабилизатор самолета служит для контроля за его движением. Компенсируя и гася некоторые пики и вибрации, он делает полет более плавным и безопасным. Поскольку отклонения бывают как в вертикальной, так и в горизонтальной оси, управление стабилизатором осуществляется также в двух направлениях — поэтому он и состоит из двух частей. Они могут иметь самую разную конструкцию, в зависимости от типа и предназначения воздушного судна, но в любом случае присутствуют на любом современном самолете.

Горизонтальная часть

Она отвечает за балансировку по вертикали, не позволяя машине то и дело «клевать носом», и состоит из двух главных деталей. Первая из них — неподвижная поверхность, которая, собственно, и представляет собой стабилизатор высоты самолета. На шарнире к этой части прикреплена вторая — руль, обеспечивающий управление.

При нормальной аэродинамической схеме горизонтальный стабилизатор располагается в хвосте. Однако встречаются также конструкции, когда он находится перед крылом или их и вовсе два — в передней части и сзади. Встречаются также так называемые схемы «бесхвостка» или «летающее крыло», вообще не имеющие горизонтального оперения.

Вертикальная часть

Эта деталь обеспечивает воздушному судну устойчивость направления в полете, не позволяя ему вилять из стороны в сторону. Это тоже составная конструкция, в которой предусмотрены неподвижный вертикальный стабилизатор самолета, или киль, а также руль направления на шарнире.

Эта часть, как и крыло, в зависимости от назначения и требуемых характеристик, может иметь самую разную форму. Разнообразие достигается также и с помощью различий во взаимном расположении всех поверхностей и добавления дополнительных частей, таких как форкиль или подфюзеляжный гребень.

Форма и подвижность

Пожалуй, самым популярным в гражданской авиации сейчас является Т-образное оперение, при котором горизонтальная часть находится на конце киля. Впрочем, встречаются и некоторые другие.

Некоторое время использовалось V-образное оперение, в котором обе части одновременно выполняли сразу функции как горизонтальной, так и вертикальной части. Сложное управление и относительно небольшая эффективность не позволили этому варианту широко распространиться.

Кроме того, встречается разнесенное вертикальное оперение, при котором его части могут находиться по бокам от фюзеляжа и даже на крыльях.

Что же касается подвижности, обычно стабилизирующие поверхности жестко закреплены относительно корпуса. Тем не менее встречаются варианты, особенно когда дело касается горизонтального оперения.

Если поменять угол относительно продольной оси можно на земле, стабилизатор такого типа называется переставляемым. Если же управление стабилизатором самолета может происходить и в воздухе, он будет подвижным. Это характерно для тяжелых авиалайнеров, нуждающихся в дополнительной балансировке. Наконец, на сверхзвуковых машинах применяется подвижный стабилизатор самолета, выполняющий также роль руля высоты.

Источник