Меню

Что будет если превысить напряжение конденсатора



Тема: Допустимое привышение максимального напряжения конденсаторов

Опции темы

Допустимое привышение максимального напряжения конденсаторов

Заявилась такая проблемка: транс мотал на чуть большее напряжение, чем надо (учитывая падение на диодах), расчитывалось получить 15-16 вольт, вышло 16.5-17 вольт. Конденсаторы Jamicon, 16 вольт. Вопрос в том, можно ли привышать допустимое напряжение конденсаторов? И если да, то на сколько?

P.S. До кучи вопросец: сколько раз мерил напряжение, каждый раз оно разное. От ЛАТРа (ровно 220) 16,5 вольт, потом там же в розетку воткнул — 17 вольт (в сети 232). Дома попробовал — цифровой показывает 16.16 (в сети 225 и цифрой и аналоговым). Потом попробовал аналоговым — 15 вольт (цифровым — 15,96). Сейчас попробовал (аналоговым) — 15.5. Отчего напряжение плавает?

Re: Допустимое привышение максимального напряжения конденсаторов

Диоды КД213А
Конденсаторы Jamicon 4700мкф, 16В (3шт.)

P.S. Опять померял. Цифровой сказал 16.18, аналоговый 15.3.

МиниатюрыМиниатюры

Частый гость Аватар для udar1 Регистрация 25.11.2005 Сообщений 109

Re: Допустимое привышение максимального напряжения конденсаторов

Re: Допустимое привышение максимального напряжения конденсаторов

Нужно смотреть в datasheet, там для каждого номинала и типа указано максимальное напряжение. Как раз недавно смотрел в связи с вопросом по диодам

В сети напряжение стабильностью величины и формы не отличается

Re: Допустимое привышение максимального напряжения конденсаторов

Ну это понятно, но конденсаторы уже есть, а покупать другие пока не вижу особого смысла. Напряжение получается 16 +-0.2 вольта. На сколько сокращается ресурс при максимальном напряжении? При привышенном (например, на вольт)?

Добавлено через 57 секунд
Скиф, так максимальное напряжение указано на обкладке или я ошибаюсь?

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Что случится, если полярный конденсатор подключить неправильно

Что произойдет, если неправильно подключить электролитический конденсатор

В мире электроники существуют различные типы конденсаторов, в том числе и полярные (например электролитические, ELD и суперконденсаторы) и неполярные конденсаторы (керамические, слюдяные, пленочные, бумажные и переменные конденсаторы). Конденсаторы играют активную и важную роль как в цепях переменного, так и постоянного тока (то есть в фильтрах, RC-цепях, улучшении коэффициента мощности, генераторах, демпферах и пускателях двигателей и т. д.). Но давайте поговорим конкретнее о полярных электролитических конденсаторах.

Что случится, если полярный конденсатор подключить неправильно

Электролитический полярный конденсатор представляет собой тип полярного конденсатора, полярность которого на клеммах обозначена катодом и анодом (положительная и отрицательная клеммы).

В электролитическом конденсаторе между двумя электродами расположен изолирующий слой, используемый в качестве диэлектрика (твердый, жидкий или газообразный материал). Существуют две металлические пластины, где первая пластина выступает в качестве положительного «анода» и покрыта изолирующим оксидным слоем посредством анодирования, и в качестве второго вывода, известного как «катод», используется электролит. Существует три типа электролитических конденсаторов, а именно алюминиевые, танталовые и ниобиевые конденсаторы.

Что случится, если полярный конденсатор подключить неправильно

В алюминиевых электролитических конденсаторах электроды изготовлены из чистого алюминия, однако анодный (положительный) электрод изготовлен путем формирования изолирующего слоя оксида алюминия (Al2O3) посредством анодирования. Электролит (твердый или не твердый) помещается на изолирующую поверхность анода. Этот электролит технически действует как катод. Второй алюминиевый электрод расположен сверху электролита, который действует как его электрическое соединение с отрицательным выводом конденсатора.

Читайте также:  Падение напряжение диодном мосте

Алюминиевая фольга и бумажная прокладка намотаны вместе. Они пропитаны электролитом, а затем покрыты алюминиевым корпусом. В плане строения конденсаторов этого достаточно, давайте сосредоточимся непосредственно на теме вопроса.

Мы знаем, что конденсатор блокирует постоянный ток и пропускает переменный ток. Полярный, т.е. электролитический конденсатор, должен быть подключен к правым клеммам источника постоянного тока для правильной работы при использовании в цепях постоянного тока. Другими словами, положительный и отрицательный источник постоянного тока должны быть подключены к положительной и отрицательной клеммам конденсатора соответственно.

Несчастные случаи реальны, и они часто происходят преднамеренно или случайно. Теперь давайте посмотрим, что произойдет, если полярный или электролитический конденсатор подключен к обратной клемме источника питания постоянного тока, т. е. отрицательный вывод к положительному и наоборот.

В случае обратного подключения конденсатор не будет работать вообще, и если приложенное напряжение выше, чем значение номинальной емкости конденсатора, больший ток утечки начнет протекать и нагревать конденсатор, что приведет к повреждению диэлектрической пленки (слой алюминия очень тонкий и легко ломается) по сравнению с приложенным напряжением постоянного тока, конденсатор даже может взорваться.

Необходимо соблюдать осторожность при подключении полярного конденсатора к источнику постоянного тока с соответствующими клеммами. В противном случае обратное напряжение может повредить конденсатор с треском за очень короткое время (несколько секунд). Это может привести к серьезным травмам или опасному пожару (танталовые конденсаторы могут легко воспламенеть).

Слои алюминия в электролитическом конденсаторе несут только прямое напряжение постоянного тока (так же, как прямой диод смещения). Обратное напряжение постоянного тока на полярном конденсаторе приведет к выходу из строя конденсатора из-за короткого замыкания между его двумя клеммами через диэлектрический материал (аналогично диоду с обратным смещением, работающему в области пробоя). Это явление известно как эффект клапана.

Имейте в виду, что электролит, используемый в фольге и электролитическом конденсаторе, может зажить и вернуть конденсатор в его нормальное положение, если в конденсаторе прошло очень низкое обратное напряжение. Поэтому, если вы приложили обратное напряжение к полярному конденсатору и используете его только для проектов, связанных с хобби, вы должны проверить конденсатор перед установкой в цепь или заменить его новым в случае коммерческого и промышленного использования.

В случае обратного напряжения (отрицательный источник к положительной клемме и наоборот) с большей вероятностью приведет к взрыву алюминиевого электролитического конденсатора из-за ионов водорода. В этом неправильном проводном соединении на электролитическом катоде имеется положительное напряжение, а на оксидном слое появляется отрицательное напряжение. В этой ситуации ионы водорода (Н2), собранные в оксидном слое, будут проходить через диэлектрическую среду между двумя пластинами и достигать металлического слоя, где все превращается в газообразный водород. Давление, создаваемое водородным газом, является достаточным для разрушения конденсатора, и корпус может взорваться с испарением.

Читайте также:  Конструкция однофазных трансформаторов напряжения

Когда положительные и отрицательные клеммы подключены обратно. Водород будет генерироваться без образования оксидной пленки, которая необходима для диэлектрической среды. По этой причине удельное сопротивление электролитического конденсатора с обратной связью меньше по сравнению с надлежащим соединением, т.е. положительным и отрицательным источником к положительной и отрицательной клеммам соответственно. Весь этот процесс потерпит неудачу и повредит конденсатор.

Диэлектрическая среда, используемая между двумя электродами электролитического конденсатора, является однонаправленной, то есть она пропускает ток только и только в одном направлении, как диод с PN-переходом. В случае обратного соединения диэлектрическая среда не будет действовать как сопротивление или изоляционный материал. Газообразный водород будет генерироваться в течение очень нескольких секунд, и конденсатор будет действовать как короткое замыкание для источника постоянного тока, что приводит к выходу конденсатора из строя (с выпуклой верхней частью или общим износом).

Всегда проверяйте положительную и отрицательную клеммы электролитического и полярного конденсаторов. Тот вывод, на котором напечатана метка «-» (отрицательная полоска или полоска со стрелкой) или короткая ножка, известен как «катод» или отрицательный конец, а другой с длинной ножкой известен как «анод» или положительный вывод.

Источник

Схемы на все случаи жизни

Под номинальным напряжением конденсатора понимается предельно допустимое напряжение постоянного тока (или сумма напряжений постоянного и переменного токов), при котором конденсатор может работать в течение гарантируемого срока службы при максимально допустимой рабочей температуре.

Номинальное напряжение постоянного тока устанавливается с необходимым запасом по отношению к длительной электрической прочности диэлектрика, исключающим возникновение в течение гарантируемого срока службы сильного старения конденсатора, вызывающего существенное ухудшение его электрических характеристик.

Допускаемые значения амплитуды переменного тока выбираются таким образом, чтобы исключить возможность развития ионизации в конденсаторе и его нагрев сверх допускаемой предельной температуры.

Эти значения обычно приводятся в технических условиях на конденсатор. При эксплуатации конденсаторов на переменном или постоянном с переменной составляющей напряжениях следует придерживаться следующих правил:

• Сумма постоянной составляющей и амплитуды пульсации не должна превышать номинального рабочего напряжения.

• Амплитуда переменного напряжения не должна превышать величины, определяемой формулой: U=400*10 3 *√(Pp/fC), где U — амплитуда переменного напряжения,В; Pp — допустимая реактивная мощность, Вар; С — емкость, пф; f — частота, гц.

• Ток, проходящий через конденсатор, не должен превышать допустимой по ТУ величины. Максимальным значением допустимого переменного напряжения, равным номинальному, обладают керамические низковольтные высокочастотные конденсаторы. Ограничение напряжения для этих конденсаторов обусловливается допустимыми значениями реактивной мощности и тока.

Для слюдяных конденсаторов допустимое значение амплитуды переменного напряжения в процентах от номинального в соответствии с действующими ТУ приведено ниже. Для конденсаторов типов КСО, СГМ:
• На номинальные напряжения до 500 В: 100% до 500 гц, 60% от 500 до 10000 гц, 20% более 10000 гц;

• На номинальные напряжения 500 В: 50% до 500 гц, 30% от 500 до 10000 гц, 10% более 10000 гц;

Читайте также:  Среднее значение синусоидального тока напряжения

• На номинальные напряжения от 1000 до 3000 в: 30% до 50 гц, 20% от 500 до 10000 гц, 5% более 10000 гц;

• На номинальные напряжения 5000 в и выше: 15% до 500 гц, 20% от 500 до 10000 гц, 3% более 10000 гц.

Срок службы конденсаторов зависит от приложенного напряжения и окружающей температуры. Следовательно, существует принципиальная возможность в зависимости от времени, в течение которого будет эксплуатироваться конденсатор, и окружающей температуры устанавливать допустимые значения рабочих напряжений, значительно отличающиеся от номинальных. Это обстоятельство, расширяющее возможность применения конденсаторов, использовано в некоторых металлобумажных конденсаторах.

Во избежание повреждения конденсатора нельзя допускать, чтобы амплитудное значение переменной составляющей (любой формы, частоты и длительности воздействия) превышало величину приложенного постоянного напряжения, так как при этом на аноде периодически будет создаваться отрицательный потенциал.

Величина допускаемого значения переменной составляющей для электролитических конденсаторов зависит от типа конденсатора и уменьшается пропорционально частоте.

Некоторые типы конденсаторов нежелательно использовать при напряжениях, значительно ниже номинального (особенно ниже 1 в), так как могут возникнуть нарушения в работе схем из-за неустойчивости внутренних контактов между обкладками и выводами, роста потерь и развития окислительных процессов, приводящих к временной или постоянной потери емкости. Примером таких конденсаторов являются конденсаторы типа БМ-1.

При низких напряжениях наиболее надежными являются конденсаторы с припаянными или приваренными, контактами: керамические, стеклоэмалевые, стеклокерамические, бумажные (БМ-2, БМТ-2, К40У-9), металлобумажные (МБГ, МБГТ, МБМ, К42У-2), металлопленочные (МПГ, МПГО, К71П-2Б), фторопластовые (К72П-6).

Для отбраковки конденсаторов с заведомо низкой электрической прочностью, обусловленной грубыми случайными дефектами, заводы-изготовители проверяют конденсаторы испытательным напряжением, значительно превышающим номинальное. Конденсаторы должны выдерживать воздействие испытательного напряжения в течение короткого времени (обычно 10 сек) не пробиваясь.

Обычно испытательное напряжение выбирается, исходя из запаса кратковременной электрической прочности конденсатора.

Для слюдяных конденсаторов испытательное напряжение выбирается обычно в два раза больше номинального, для бумажных на напряжение до 1500 в 3 раза больше, а при 1500 в и выше в 2 раза больше.

Испытательным напряжением на заводах-изготовителях обычно проверяются все выпускаемые конденсаторы (испытание на электрическую прочность), что позволяет отбраковывать образцы с особо грубыми дефектами, но, однако, не обеспечивает безотказность при последующей эксплуатации конденсаторов, выдержавших это испытание. У конденсаторов, истинное пробивное напряжение которых превышало испытательное на сравнительно небольшую величину, воздействие испытательного напряжения может вызвать необратимое изменение в диэлектрике, снижающее запас электрической прочности.

При повторном испытании на электрическую прочность, такие конденсаторы могут выйти из строя. Эксперименты показывают, что если достаточно большую партию конденсаторов неоднократно испытывать одним и тем же испытательным напряжением, то при последующих испытаниях всегда будет иметься некоторое количество пробитых образцов.

Исходя из сказанного, проверки конденсаторов на электрическую прочность следует стремиться уменьшать до предела, например до двух: 1) на заводе-изготовителе конденсаторов и 2) при входном контроле на заводе-потребителе.

Однако при входном контроле рекомендуется проводить испытание конденсаторов всех типов на кратковременную электрическую прочность при испытательном напряжении не выше 1.15*Uном.

Источник