Меню

Чему равно мощность через напряжение



Формула мощности электрического тока, расчет по мощности и напряжению

Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

По какой формуле вычисляется

Расчет силы тока по мощности и напряжению в сети постоянного тока

Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.

Расчет силы тока по мощности и напряжению:

Измеряется в амперах.

Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.

Формула расчета мощности по току и напряжению:

Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.

Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:

Однофазные нагрузки

В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.

В скалярном виде это будет выглядеть так:

В результате расчет P, Q, S имеет вид прямоугольного треугольника. Два катета этого треугольника представляют собой P и Q составляющие, а гипотенуза — их алгебраическую сумму.

S измеряется в вольт-амперах (ВА), Q измеряется в вольт-амперах-реактивных (ВАр), Р измеряется в ваттах (Вт).

Зная величины катетов для треугольников, можно рассчитать коэффициент мощности (cos φ). Как это сделать, показано на изображении треугольника.

Расчет в трехфазной сети

Переменный I (ток) отличается от постоянного по всем параметрам, особенно наличием нескольких фаз. Расчет P в трехфазной нагрузке необходим для правильного определения характеристик подключаемой нагрузки. Трехфазные сети широко применяются в связи с удобством эксплуатации и малыми материальными затратами.

Трехфазные цепи могут соединяться двумя способами – звездой и треугольником. На всех схемах фазы обозначают символами А, В, С. Нейтральный провод обозначают символом N.

При соединении звездой различают два вида U (напряжения) – фазное и линейное. Фазное U определяется как U между фазой и нейтральным проводом. Линейное U определяется как U между двумя фазами.

Эти два U связаны между собой соотношением:

Линейные и фазные электротоки при соединении звездой равны друг другу: IЛ = IФ

Форма расчета S при соединении звездой:

S = SA + SB + SC = 3 × U × I

Р = 3 × Uф × Iф × cos φ

Q = √3 × Uф × Iф × sin φ.

При соединении треугольником фазное и линейное U равны друг другу: UЛ = UФ

Линейный I при соединении треугольником определяется по формуле:

Формулы мощности электрического тока при соединении треугольником:

  • S = 3 × Sф = √3 × Uф × Iф;
  • Р = √3 × Uф × Iф × cosφ;
  • Q = √3 × Uф × Iф × sinφ.

Средняя P в активной нагрузке

В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.

При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.

Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Читайте также:  Мощность биосферы составляет около

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Источник

Формула мощности по току и напряжению схемы

Как узнать силу тока, зная мощность и напряжения.

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Расчет мощностного показателя по амперам и ваттам.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Расчет электроэнергии через электромощность и электронапряжение

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Вам это будет интересно Обозначение разного электрооборудованья на схемах

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Подсчет потребляемой мощности

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Что влияет на мощность тока

Добавление электрического сопротивления позволяет учесть потери в подключенной цепи (нагрузке). В формуле нахождения мощности для полной цепи учитывают параметры источника питания. Для более точного анализа следует оценить скорость потребления энергии на единицу объема проводника (ΔV).

Мощность равна формуле:

  • Rуд – удельное сопротивление;
  • j – плотность тока соответствующего участка цепи.

Из этого выражения понятна зависимость расхода электричества от проводимости. Данное соотношение определяет требования к используемой кабельной продукции. При недостаточном сечении (высоком уровне примесей) увеличивается нагрев. Аналогичный результат получают при подключении мощной нагрузки. На определенном уровне произойдет тепловое разрушение материала.

К сведению. Этот процесс является причиной типичных аварийных ситуаций. Для предотвращения повреждений применяют специализированную технику – автоматические выключатели.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Читайте также:  Какая пушка нужна для натяжных потолков мощность

Основные мощностные разновидности.

Мощность тока через резистор

Пусть переменный ток

протекает через резистор сопротивлением

. Напряжение на резисторе, как нам известно, колеблется в фазе с током:

Поэтому для мгновенной мощности получаем:

Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Мощность переменного тока через резистор.

нашей мощности связано с амплитудами тока и напряжения привычными формулами:

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой

Гц, т. е. за секунду совершается

колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно

Среднее значение квадрата синуса равно

Итак, для среднего значения

мощности тока на резисторе имеем:

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения

, а затем к источнику переменного напряжения с таким же действующим значением

, то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые

вольт из розетки — это действующее значение напряжения бытовой электросети.

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение

. Как мы знаем, ток через конденсатор опережает по фазе напряжение на

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени.

Мощность переменного тока через конденсатор.

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний.

Напряжение на конденсаторе и сила тока через него.

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть,
. Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть,
. Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть,
. Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть,
. Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Мощность тока через катушку

Пусть на катушку подано переменное напряжение

. Ток через катушку отстаёт по фазе от напряжения на

Для мгновенной мощности получаем:

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Напряжение на катушке и сила тока через неё.

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

Читайте также:  Способ измерения мощности дозы

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

Мощность тока на произвольном участке

Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки. На этот участок подано переменное напряжение

Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз

. Мы записывали это так:

Тогда для мгновенной мощности имеем:

Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:

В результате получим:

Но среднее значение величины

равно нулю! Поэтому средняя мощность оказывается равной:

Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:

Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем

, и мы приходим к формуле (3). Для конденсатора и катушки

, и средняя мощность равна нулю.

Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы

у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.

С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.

Источник

Калькулятор мощности – расчет по току, напряжению, сопротивлению

С помощью калькулятора мощности вы можете самостоятельно выполнить расчет мощности по току и напряжению для однофазных (220 В) и трехфазных сетей (380 В). Программа также рассчитывает мощность через сопротивление и напряжение, или через ток и сопротивление согласно закону Ома. Значение cos φ принимается согласно указаниям технического паспорта прибора, усредненным значениям таблиц ниже или рассчитываются самостоятельно по формулам. Без необходимости рекомендуем не изменять коэффициент и оставлять равным 0.95. Чтобы получить результат расчета, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета мощности

Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.
Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).

— Мощность по току и напряжению (постоянный ток): P = I × U
— Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ
— Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3
— Мощность по току и сопротивлению: P = I 2 × R
— Мощность по напряжению и сопротивлению: P = U 2 / R

  • I – сила тока, А;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Расчет мощности (закон Ома)

Расчет косинуса фи (cos φ)

φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.

cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.

Формула расчета косинуса фи: cos φ = S / P

  • S – полная мощность, ВА (Вольт-ампер);
  • P – активная мощность, Вт.

Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.

Формула расчета активной мощности: P (Вт) = I × U × cos φ

Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.

Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ

Полная мощность электроприбора (S) — это суммарная величина, которая включает в себе как активную, так и реактивную составляющие мощности.

Формула расчета полной мощности: S (ВА) = I × U или S = √( P 2 + Q 2 )

Источник